Page 26 - Computational Retinal Image Analysis
P. 26
References 15
[3] L. Guariguata, D.R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, J.E. Shaw,
Global estimates of diabetes prevalence for 2013 and projections for 2035, Diabetes Res.
Clin. Pract. 103 (2) (2014) 137–149.
[4] J. Grauslund, A. Green, A.K. Sjolie, Prevalence and 25 year incidence of proliferative ret-
inopathy among Danish type 1 diabetic patients, Diabetologia 52 (9) (2009) 1829–1835.
[5] R. Klein, M.D. Knudtson, K.E. Lee, R. Gangnon, B.E. Klein, The Wisconsin
Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of
retinopathy in persons with type 1 diabetes, Ophthalmology 115 (11) (2008) 1859–1868.
[6] J. Grauslund, A. Green, A.K. Sjolie, Blindness in a 25-year follow-up of a
population-based cohort of Danish type 1 diabetic patients, Ophthalmology 116 (11)
(2009) 2170–2174.
[7] J.M.G. Wilson, G. Jungner, Principles and Practice of Screening for Disease, World
Health Organization, Geneva, 1968.
[8] E. Stefansson, T. Bek, M. Porta, N. Larsen, J.K. Kristinsson, E. Agardh, Screening and
prevention of diabetic blindness, Acta Ophthalmol. Scand. 78 (4) (2000) 374–385.
[9] G. Liew, M. Michaelides, C. Bunce, A comparison of the causes of blindness certifi-
cations in England and Wales in working age adults (16–64 years), 1999–2000 with
2009–2010, BMJ Open 4 (2) (2014). e004015.
[10] Early Treatment Diabetic Retinopathy Study Research Group, Grading diabetic retinopa-
thy from stereoscopic color fundus photographs—an extension of the modified Airlie
House classification. ETDRS report number 10, Ophthalmology 98 (5 Suppl) (1991)
786–806.
[11] C.P. Wilkinson, F.L. Ferris, R.E. Klein, et al., Proposed international clinical diabetic
retinopathy and diabetic macular edema disease severity scales, Ophthalmology 110 (9)
(2003) 1677–1682.
[12] A. Tufail, V.V. Kapetanakis, S. Salas-Vega, et al., An observational study to assess if
automated diabetic retinopathy image assessment software can replace one or more steps
of manual imaging grading and to determine their cost-effectiveness, Health Technol.
Assess. 20 (92) (2016) 1–72.
[13] M.F. Norgaard, J. Grauslund, Automated screening for diabetic retinopathy—a systematic
review, Ophthalmic Res. 60 (1) (2018) 9–17. https://www.doi.org/10.1159/000486284.
[14] V. Gulshan, L. Peng, M. Coram, et al., Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA 316
(22) (2016) 2402–2410.
[15] M.D. Abramoff, Y. Lou, A. Erginay, et al., Improved automated detection of diabetic
retinopathy on a publicly available dataset through integration of deep learning, Invest.
Ophthalmol. Vis. Sci. 57 (13) (2016) 5200–5206.
[16] Y. Morizane, N. Morimoto, A. Fujiwara, R. Kawasaki, H. Yamashita, Y. Ogura,
F. Shiraga, Incidence and causes of visual impairment in Japan: the first nation-wide
complete enumeration survey of newly certified visually impaired individuals. Jpn. J.
Ophthalmol. (2018). https://doi.org/10.1007/s10384-018-0623-4.
[17] ETDRS, Early treatment diabetic retinopathy study research group. Photocoagulation
for diabetic macular edema. Early treatment diabetic retinopathy study report number 1,
Arch. Ophthalmol. 103 (12) (1985) 1796–1806.
[18] Y.T. Wang, M. Tadarati, Y. Wolfson, S.B. Bressler, N.M. Bressler, Comparison of preva-
lence of diabetic macular edema based on monocular fundus photography vs optical
coherence tomography, JAMA Ophthalmol. 134 (2) (2016) 222–228.
[19] J. De Fauw, J.R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham,
X. Glorot, B. O'Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer,