Page 21 -
P. 21

xx                                                                                 Contents


                                       A.1.3 QR factorization ............................ 649
                                       A.1.4 Cholesky factorization ......................... 650
                                   A.2 Linear least squares ............................... 651
                                       A.2.1 Total least squares ........................... 653
                                   A.3 Non-linear least squares ............................. 654
                                   A.4 Direct sparse matrix techniques ......................... 655
                                       A.4.1 Variable reordering ........................... 656
                                   A.5 Iterative techniques ............................... 656
                                       A.5.1 Conjugate gradient ........................... 657
                                       A.5.2 Preconditioning ............................. 659
                                       A.5.3 Multigrid ................................ 660
                                B Bayesian modeling and inference                                     661
                                   B.1 Estimation theory ................................ 662
                                       B.1.1  Likelihood for multivariate Gaussian noise .............. 663
                                   B.2 Maximum likelihood estimation and least squares ............... 665
                                   B.3 Robust statistics ................................. 666
                                   B.4 Prior models and Bayesian inference ...................... 667
                                   B.5 Markov random fields .............................. 668
                                       B.5.1  Gradient descent and simulated annealing ............... 670
                                       B.5.2  Dynamic programming ......................... 670
                                       B.5.3  Belief propagation ........................... 672
                                       B.5.4  Graph cuts ............................... 674
                                       B.5.5  Linear programming .......................... 676
                                   B.6 Uncertainty estimation (error analysis) ..................... 678

                                C Supplementary material                                              679
                                   C.1 Data sets ..................................... 680
                                   C.2 Software ..................................... 682
                                   C.3 Slides and lectures ............................... 689
                                   C.4 Bibliography .................................. 690
                                References                                                            691

                                Index                                                                 793
   16   17   18   19   20   21   22   23   24   25   26