Page 115 - Control Theory in Biomedical Engineering
P. 115

Modeling and optimal control of cancer-immune system  101



                 xlabel (’ Time ( days )’)
                 ylabel (’ Effector Cells, E ( t )’)
                 grid

                 figure (2)
                 hold off
                 plot ( r, T,’ r –.’,’ LineWidth ’,3)
                 hold on
                 plot ( sol . x, sol . y (2,:),’ LineWidth ’,2)
                 legend (’ With Control ’,’ Without Control ’);
                 xlim ([0 30])
                 xlabel (’ Time ( days )’)
                 ylabel (’ Tumour Cells, T ( t )’)
                 grid

                 figure (3)
                 hold off
                 plot ( r, v,’ r ––’,’ LineWidth ’,3)
                 hold on
                 bar ( r (100:900:10001), v (100:900:10001),’ barwidth ’,.1)
                 xlim ([0 30])
                 xlabel (’ Time ( days )’)
                 ylabel (’ Chemotherapy Control, V ( t )’)
                 grid
                 hold off
                 %
                 figure (4)
                 hold off
                 plot ( r, w,’ r ––’,’ LineWidth ’,3)
                 hold on
                 bar ( r (100:900:10001), w (100:900:10001),’ barwidth ’,.1)
                 xlim ([0 30])
                 xlabel (’ Time ( days )’)
                 ylabel (’ Imunotherapy Control, W ( t )’)
                 grid
                 hold off
                 end
                 %

                 function dy = Rihan ( t, y, ylag ) % exam1f ( t, y, Z, r1, k1, r2, a, mu1,
                 e, k2, mu2 )
                 % ylag = Z (:,1);
                 dy = zeros (2,1);
   110   111   112   113   114   115   116   117   118   119   120