Page 116 - Control Theory in Biomedical Engineering
P. 116

102   Control theory in biomedical engineering



              delta =0.2;
              eta = 0.3;
              mu = 0.003611;
              r2 = 1.03;
              r3 = 1;
              b = 2*10^(–3);
              n =1.;
              c1 =0.00003;
              c2 =0.00000003;
              s =0.5;
              roh =0.01;

              dy (1)= s + roh * ylag (1)* ylag (2)/( eta + ylag (2))– mu * ylag (1)* ylag
              (2)– delta * y (1);
              dy (2)= r2 * y (2)*(1 – b * y (2)) – n * y (1)* y (2)– c1 * y (3)* y (2);
              dy (3)= r3 * y (3)*(1– y (3)) – c2 * y (2)* y (3);
              end





          References

          American Association for Cancer Research, 2016. American Association for Cancer
             Research: special conference on tumor immunology and immunotherapy, Boston,
             MA, USA, October 20–23.
          Araujo, R., McElwain, D., 2004. A history of the study of solid tumor growth: the contri-
             bution of mathematical modeling. Bull. Math. Biol. 66, 1039–1091.
          Banks, H.T., 1975. Modelling and Control in Biosciences. Lecture Notes in Biomathemat-
             ics, vol. 6. Springer, Berlin.
          Bellomo, N., Li, N., Maini, P., 2008. On the foundations of cancer modeling: selected
             topics, speculations, and perspectives. Math. Mod. Methods Appl. Sci. 18, 593–646.
          Bocharov, G., Rihan, F.A., 2000. Numerical modelling in biosciences using delay differen-
             tial equations. J. Comput. Appl. Math. 125, 183–199.
          Bodnar, M., Forys, U., Poleszczuk, J., 2011. Analysis of biochemical reactions models with
             delays. J. Math. Anal. Appl. 376 (1), 74–83.
          Bray, F., Ferlay, J., Torre, L.A., 2018. Global Cancer Statistics 2018: Globocan estimates of
             incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.
             68, 394–424.
          Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P., 2006. Modeling aspects of cancer
             dynamics: a review. Philos. Trans. R. Soc. A 364, 1563–1578.
          Chaplain, M., 2008. Modelling aspects of cancer growth: insight from mathematical and
             numerical analysis and computational simulation. In: Multiscale Problems in the Life
             Sciences. Lecture Notes in Mathematics, vol. 1940. Springer, Berlin, pp. 147–200.
          de Pillis, L.G., Radunskaya, A., 2001. A mathematical tumor model with immune resistance
             and drug therapy: an optimal control approach. Comput. Math. Methods Med.
             3, 78–100.
   111   112   113   114   115   116   117   118   119   120   121