Page 116 - Control Theory in Biomedical Engineering
P. 116
102 Control theory in biomedical engineering
delta =0.2;
eta = 0.3;
mu = 0.003611;
r2 = 1.03;
r3 = 1;
b = 2*10^(–3);
n =1.;
c1 =0.00003;
c2 =0.00000003;
s =0.5;
roh =0.01;
dy (1)= s + roh * ylag (1)* ylag (2)/( eta + ylag (2))– mu * ylag (1)* ylag
(2)– delta * y (1);
dy (2)= r2 * y (2)*(1 – b * y (2)) – n * y (1)* y (2)– c1 * y (3)* y (2);
dy (3)= r3 * y (3)*(1– y (3)) – c2 * y (2)* y (3);
end
References
American Association for Cancer Research, 2016. American Association for Cancer
Research: special conference on tumor immunology and immunotherapy, Boston,
MA, USA, October 20–23.
Araujo, R., McElwain, D., 2004. A history of the study of solid tumor growth: the contri-
bution of mathematical modeling. Bull. Math. Biol. 66, 1039–1091.
Banks, H.T., 1975. Modelling and Control in Biosciences. Lecture Notes in Biomathemat-
ics, vol. 6. Springer, Berlin.
Bellomo, N., Li, N., Maini, P., 2008. On the foundations of cancer modeling: selected
topics, speculations, and perspectives. Math. Mod. Methods Appl. Sci. 18, 593–646.
Bocharov, G., Rihan, F.A., 2000. Numerical modelling in biosciences using delay differen-
tial equations. J. Comput. Appl. Math. 125, 183–199.
Bodnar, M., Forys, U., Poleszczuk, J., 2011. Analysis of biochemical reactions models with
delays. J. Math. Anal. Appl. 376 (1), 74–83.
Bray, F., Ferlay, J., Torre, L.A., 2018. Global Cancer Statistics 2018: Globocan estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.
68, 394–424.
Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P., 2006. Modeling aspects of cancer
dynamics: a review. Philos. Trans. R. Soc. A 364, 1563–1578.
Chaplain, M., 2008. Modelling aspects of cancer growth: insight from mathematical and
numerical analysis and computational simulation. In: Multiscale Problems in the Life
Sciences. Lecture Notes in Mathematics, vol. 1940. Springer, Berlin, pp. 147–200.
de Pillis, L.G., Radunskaya, A., 2001. A mathematical tumor model with immune resistance
and drug therapy: an optimal control approach. Comput. Math. Methods Med.
3, 78–100.