Page 117 - Control Theory in Biomedical Engineering
P. 117

Modeling and optimal control of cancer-immune system  103


              de Pillis, L.G., Radunskaya, A., 2003. The dynamics of an optimally controlled tumor model:
                 a case study. Math. Comput. Model. 37, 1221–1244.
              de Pillis, L.G., Gu, W., Radunskaya, A.E., 2006. Mixed immunotherapy and chemotherapy
                 of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238 (4),
                 841–862.
              de Pillis, L.G., et al., 2008. Optimal control of mixed immunotherapy and chemotherapy of
                 tumors. J. Biol. Syst. 16 (1), 51–80.
              Dunn, G.P., Bruce, A., Ikeda, H., Old, L.J., Schreiber, R.D., 2002. Cancer immunoediting:
                 from immunosurveillance to tumour scape. Nat. Immunol. 3, 991–998.
              Fleming, W.H., Rishel, R.W., 1994. Deterministic and Stochasitic Optimal Control.
                 Springer-Verlag, New York, NY.
              Fowler, A.C., Mackey, M.C., 2002. Relaxation oscillations in a class of delay differential
                 equations. SIAM J. Appl. Math. 63, 299–323.
              Halanay, A., 1966. Differential Equations, Stability, Oscillations, Time Lags. Academic Press,
                 New York, London.
              Joshi, B., Wang, X., Banerjee, X., Tian, H., Matzavinos, A., Chaplain, M.A.J., 2009. On
                 immunotherapies and cancer vaccination protocols: a mathematical modelling approach.
                 J. Theor. Biol. 259 (4), 820–827.
              Kim, R., Woods, T., Radunskaya, A., 2018. Mathematical modeling of tumor immune
                 interactions: a closer look at the role of a PD-L1 inhibitor in cancer immunotherapy.
                 SPORA J. Biomath. 4, 25–41.
              Kirschner, D., Panetta, J.C., 1998. Modeling immunotherapy of the tumor-immune
                 interaction. J. Math. Biol. 37, 235–252.
              Kolmanovskii, V.B., Shaikhet, L.E., 1996. Control of Systems With Aftereffect. Translation
                 of Mathematical Monographs, American Mathematical Society, USA.
              Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.L., 1994. Nonlinear dynamics of
                 immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math.
                 Biol. 56 (2), 295–321.
              Lackie, J., 2010. A Dictionary of Biomedicine. Oxford University Press, Oxford.
              Liu, Y., Huang, H., Saxena, A., Xiang, J., 2002. Intratumoral coinjection of two adeno-
                 viral vectors expressing functional interleukin-18 and inducible protein-10, respec-
                 tively, synergizes to facilitate regression of established tumors. Cancer Gene Ther.
                 9, 533–542.
              Nagy, J., 2005. The ecology and evolutionary biology of cancer: a review of mathematical
                 models of necrosis and tumor cells diversity. Math. Biosci. Eng. 2, 381–418.
              Nelson, N.W., Perelson, A.S., 2002. Mathematical analysis of delay differential equation
                 models of HIV-1 infection. Math. Biosci. 179, 73–94.
              Neves, H., Fai Kwok, H., 2015. Recent advances in the field of anti-cancer immunotherapy.
                 BBA Clin. 3, 280–288.
              Pontryagin, L.S., Boltyanski, R.V., Gamkrelidge, R.V., Mischenko, E.F., 1962. The
                 Mathematical Theory of Optimal Processes. John Wiley & Sons, New York, NY.
              Preziosi, L., 2003. Cancer Modeling and Simulation. Chapman & Hall/CRC Mathematical
                 Biology Series (Book 3).
              Rihan, F.A., 2000. Numerical Treatment of Delay Differential Equation in Bioscience
                 (Ph.D. thesis), The University of Manchester (UK).
              Rihan, F., Velmurugan, G., 2020. Dynamics of delay differential models with arbitrary-
                 derivative for tumor-immune system. Chaos Solitons Fractals 132, 109592.
              Rihan, F.A., Safan, M., Abdeen, M.A., Abdel-Rahman, D.H., 2012. Mathematical model-
                 ing of tumor cell growth and immune system interactions. Int. J. Modern Phys. 95–111.
              Rihan, F.A., Abdelrahman, D., Al-Maskari, F., Ibrahim, F., 2014a. A delay differential model
                 for tumour-immune response and control with chemo-immunotherapy. Comput.
                 Math. Methods Med. 2014, 15.
   112   113   114   115   116   117   118   119   120   121   122