Page 118 - Control Theory in Biomedical Engineering
P. 118

104   Control theory in biomedical engineering


          Rihan, F.A., Abdelrahman, D.H., Lakshmanan, S., Alkhajeh, A., 2014b. A time delay model
             of tumour-immune system interactions: global dynamics, parameter estimation, sensitiv-
             ity analysis. Appl. Math. Comput. 232, 606–623.
          Rihan, F.A., Hashish, A., Al-Maskari, F., Sheek-Hussein, M., Ahmed, E., Riaz, M.B.,
             Yafia, R., 2016. Dynamics of tumor-immune system with fractional-order. J. Tumor.
             Res. 2 (1), 109.
          Rihan, F.A., Lakshmanan, S., Maurer, H., 2019. Optimal control of tumour-immune model
             with time-delay and immuno-chemotherapy. Appl. Math. Comput. 353 (7), 147–165.
          Roose, T., Chapman, S., Maini, P., 2007. Mathematical models of avascular tumor growth.
             SIAM Rev. 49, 179–208.
          Sinek, J., Frieboes, H., Zheng, X., Cristini, V., 2004. Two-dimensional chemotherapy sim-
             ulations demonstrate fundamental transport and tumor response limitations involving
             nanoparticles. Biomed. Microdevices 6 (4), 297–309.
          Smith, S.E., 2005. Optimal control of delay differential equations using evolutionary
             algorithms. Complex. Int. 12, 1–10.
          Smith, H., 2011. An Introduction to Delay Differential Equations With Applications to the
             Life Sciences. Springer, New York, Dordrecht, Heidelberg, London.
          Swan, G., 1985. Optimal control applications in the chemotherapy of multiple myeloma.
             IMA J. Math. Appl. Med. Biol. 2, 139–160.
          Villasana, M., Radunskaya, A., 2003. A delay differential equation model for tumour growth.
             J. Math. Biol. 47, 270–294.
          WHO, 2018. International Agency for Research on Cancer (IARC). WHO, p. 263.
   113   114   115   116   117   118   119   120   121   122   123