Page 310 - Control Theory in Biomedical Engineering
P. 310
A double pendulum model for human walking control 283
Bohnsack-McLagan, N.K., Cusumano, J.P., Dingwell, J.B., 2016. Adaptability of stride-
to-stride control of stepping movements in human walking. J. Biomech. 49 (2),
229–237.
Bollens, B., Crevecoeur, F., Nguyen, V., Detrembleur, C., Lejeune, T., 2010. Does human
gait exhibit comparable and reproducible long-range autocorrelations on level ground
and on treadmill? Gait Posture 32 (3), 369–373.
Boubaker, O., Iriarte, R. (Eds.), 2017. The Inverted Pendulum in Control Theory and
Robotics: From Theory to New Innovations. In: vol. 111. IET.
Decker, L.M., Cignetti, F., Hunt, N., Potter, J.F., Stergiou, N., Studenski, S.A., 2016.
Effects of aging on the relationship between cognitive demand and step variability during
dual-task walking. Age 38 (4), 363–375.
Dingwell, J.B., Cusumano, J.P., 2015. Identifying stride-to-stride control strategies in human
treadmill walking. PLoS One 10(4), e0124879.
Dingwell, J.B., Marin, L.C., 2006. Kinematic variability and local dynamic stability of upper
body motions when walking at different speeds. J. Biomech. 39 (3), 444–452.
Dingwell, J.B., John, J., Cusumano, J.P., 2010. Do humans optimally exploit redundancy to
control step variability in walking? PLoS Comput. Biol. 6(7), e1000856.
Duncan, A.W., 2018. Bridging the Gap: Individual Relationships between Long Range
Correlations and Dexterity in Walking. University of Nebraska at Omaha.
Engelbrecht, S.E., 2001. Minimum principles in motor control. J. Math. Psychol. 45 (3),
497–542.
Faisal, A.A., Selen, L.P., Wolpert, D.M., 2008. Noise in the nervous system. Nat. Rev.
Neurosci. 9 (4), 292.
Garcia, M., Chatterjee, A., Ruina, A., Coleman, M., 1998. The simplest walking model:
stability, complexity, and scaling. J. Biomech. Eng. 120 (2), 281–288.
Hausdorff, J.M., 2007. Gait dynamics, fractals and falls: finding meaning in the stride-to-
stride fluctuations of human walking. Hum. Mov. Sci. 26 (4), 555–589.
Hausdorff, J., Zemany, L., Peng, C.-K., Goldberger, A., 1999. Maturation of gait dynamics:
stride-to-stride variability and its temporal organization in children. J. Appl. Physiol.
86 (3), 1040–1047.
Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Stanley, H.E., 2001. Effect of trends on
detrended fluctuation analysis. Phys. Rev. E 64 (1), 011114.
Huang, Y., Huang, Q., Wang, Q., 2017. Chaos and bifurcation control of torque-stiffness-
controlled dynamic bipedal walking. IEEE Trans. Syst. Man Cybern. Syst. Hum. 47 (7),
1229–1240.
Kang, H.G., Dingwell, J.B., 2008. Separating the effects of age and walking speed on gait
variability. Gait Posture 27 (4), 572–577.
Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H., Havlin, S., Bunde, A., 2001. Detect-
ing long-range correlations with detrended fluctuation analysis. Physica A 295 (3–4),
441–454.
Karimian, M., Towhidkhah, F., Rostami, M., 2006. Application of model predictive imped-
ance control (MPIC) in analysis of human walking on rough terrains. Int. J. Appl.
Electromagn. Mech. 24 (3–4), 147–162.
Kirchner, M., Schubert, P., Liebherr, M., Haas, C.T., 2014. Detrended fluctuation analysis
and adaptive fractal analysis of stride time data in Parkinson’s disease: stitching together
short gait trials. PLoS One 9(1), e85787.
Kuo, A.D., 2001. A simple model of bipedal walking predicts the preferred speed–step length
relationship. J. Biomech. Eng. 123 (3), 264–269.
Kuo, A.D., 2002. Energetics of actively powered locomotion using the simplest walking
model. J. Biomech. Eng. 124 (1), 113–120.