Page 311 - Control Theory in Biomedical Engineering
P. 311

284   Control theory in biomedical engineering


          Larsson, J., Miller, M., Hansson, E.E., 2016. Vestibular asymmetry increases double
             support time variability in a counter-balanced study on elderly fallers. Gait Posture
             45, 31–34.
          Lazzarini, B.S.R., Kataras, T.J.J.G., 2016. Treadmill walking is not equivalent to overground
             walking for the study of walking smoothness and rhythmicity in older adults. Gait Pos-
             ture 46, 42–46.
          Lewek, M.D., Cruz, T.H., Moore, J.L., Roth, H.R., Dhaher, Y.Y., Hornby, T.G., 2009.
             Allowing intralimb kinematic variability during locomotor training poststroke improves
             kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys. Ther.
             89 (8), 829–839.
          Malcolm, B.R., Foxe, J.J., Butler, J.S., Molholm, S., De Sanctis, P., 2018. Cognitive load
             reduces the effects of optic flow on gait and electrocortical dynamics during treadmill
             walking. J. Neurophysiol. 120 (5), 2246–2259.
          Monaco, V., Tropea, P., Rinaldi, L.A., Micera, S., 2018. Uncontrolled manifold hypothesis:
             organization of leg joint variance in humans while walking in a wide range of speeds.
             Hum. Mov. Sci. 57, 227–235.
          Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H., Kauffman, L.H., 2017. Investigation of
             bifurcations in the behavior of the process equation. Preprint arXiv: 00419.
          Nourian Zavareh, M., Nazarimehr, F., Rajagopal, K., Jafari, S., 2018. Hidden attractor in a
             passive motion model of compass-gait robot. Int. J. Bifurcation Chaos 28 (14), 1850171.
          Osborne, L.C., Lisberger, S.G., Bialek, W., 2005. A sensory source for motor variation.
             Nature 437 (7057), 412.
          Pearson, K.G., 2004. Generating the walking gait: role of sensory feedback. In: Progress in
             Brain Research. vol. 143. Elsevier, pp. 123–129.
          Rao, P.G.K., Subramanyam, M., Reddy, K.M., Sarma, G., Rupa, P., 2010. Un-obstructive
             capturing of power parasitically from normal human walking. J. Instrum. Soc. India
             40 (3), 231–234.
          Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W., Kerrigan, D.C., 2007. A kinematic
             and kinetic comparison of overground and treadmill walking in healthy subjects. Gait
             Posture 26 (1), 17–24.
          Roerdink, M., de Jonge, C.P., Smid, L.M., Daffertshofer, A., 2019. Tightening up the
             control of treadmill walking: effects of maneuverability range and acoustic pacing on
             stride-to-stride fluctuations. Front. Physiol. 10.
          Rosenblatt, N.J., Grabiner, M.D., 2010. Measures of frontal plane stability during treadmill
             and overground walking. Gait Posture 31 (3), 380–384.
          Salinas, M.M., Wilken, J.M., Dingwell, J.B., 2017. How humans use visual optic flow to
             regulate stepping during walking. Gait Posture 57, 15–20.
          Scholz, J.P., Sch€oner, G., 1999. The uncontrolled manifold concept: identifying control var-
             iables for a functional task. Exp. Brain Res. 126 (3), 289–306.
          Scott, S.H., 2004. Optimal feedback control and the neural basis of volitional motor control.
             Nat. Rev. Neurosci. 5 (7), 532.
          Srinivasan, M., Ruina, A., 2006. Computer optimization of a minimal biped model discovers
             walking and running. Nature 439 (7072), 72.
          Su, J.L.-S., Dingwell, J.B., 2007. Dynamic stability of passive dynamic walking on an
             irregular surface. J. Biomech. Eng. 129 (6), 802–810.
          Terrier, P., 2016. Fractal fluctuations in human walking: comparison between auditory and
             visually guided stepping. Ann. Biomed. Eng. 44 (9), 2785–2793.
                    e
          Terrier, P., D riaz, O., 2012. Persistent and anti-persistent pattern in stride-to-stride variabil-
             ity of treadmill walking: influence of rhythmic auditory cueing. Hum. Mov. Sci. 31 (6),
             1585–1597.
   306   307   308   309   310   311   312   313   314   315   316