Page 311 - Control Theory in Biomedical Engineering
P. 311
284 Control theory in biomedical engineering
Larsson, J., Miller, M., Hansson, E.E., 2016. Vestibular asymmetry increases double
support time variability in a counter-balanced study on elderly fallers. Gait Posture
45, 31–34.
Lazzarini, B.S.R., Kataras, T.J.J.G., 2016. Treadmill walking is not equivalent to overground
walking for the study of walking smoothness and rhythmicity in older adults. Gait Pos-
ture 46, 42–46.
Lewek, M.D., Cruz, T.H., Moore, J.L., Roth, H.R., Dhaher, Y.Y., Hornby, T.G., 2009.
Allowing intralimb kinematic variability during locomotor training poststroke improves
kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys. Ther.
89 (8), 829–839.
Malcolm, B.R., Foxe, J.J., Butler, J.S., Molholm, S., De Sanctis, P., 2018. Cognitive load
reduces the effects of optic flow on gait and electrocortical dynamics during treadmill
walking. J. Neurophysiol. 120 (5), 2246–2259.
Monaco, V., Tropea, P., Rinaldi, L.A., Micera, S., 2018. Uncontrolled manifold hypothesis:
organization of leg joint variance in humans while walking in a wide range of speeds.
Hum. Mov. Sci. 57, 227–235.
Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H., Kauffman, L.H., 2017. Investigation of
bifurcations in the behavior of the process equation. Preprint arXiv: 00419.
Nourian Zavareh, M., Nazarimehr, F., Rajagopal, K., Jafari, S., 2018. Hidden attractor in a
passive motion model of compass-gait robot. Int. J. Bifurcation Chaos 28 (14), 1850171.
Osborne, L.C., Lisberger, S.G., Bialek, W., 2005. A sensory source for motor variation.
Nature 437 (7057), 412.
Pearson, K.G., 2004. Generating the walking gait: role of sensory feedback. In: Progress in
Brain Research. vol. 143. Elsevier, pp. 123–129.
Rao, P.G.K., Subramanyam, M., Reddy, K.M., Sarma, G., Rupa, P., 2010. Un-obstructive
capturing of power parasitically from normal human walking. J. Instrum. Soc. India
40 (3), 231–234.
Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W., Kerrigan, D.C., 2007. A kinematic
and kinetic comparison of overground and treadmill walking in healthy subjects. Gait
Posture 26 (1), 17–24.
Roerdink, M., de Jonge, C.P., Smid, L.M., Daffertshofer, A., 2019. Tightening up the
control of treadmill walking: effects of maneuverability range and acoustic pacing on
stride-to-stride fluctuations. Front. Physiol. 10.
Rosenblatt, N.J., Grabiner, M.D., 2010. Measures of frontal plane stability during treadmill
and overground walking. Gait Posture 31 (3), 380–384.
Salinas, M.M., Wilken, J.M., Dingwell, J.B., 2017. How humans use visual optic flow to
regulate stepping during walking. Gait Posture 57, 15–20.
Scholz, J.P., Sch€oner, G., 1999. The uncontrolled manifold concept: identifying control var-
iables for a functional task. Exp. Brain Res. 126 (3), 289–306.
Scott, S.H., 2004. Optimal feedback control and the neural basis of volitional motor control.
Nat. Rev. Neurosci. 5 (7), 532.
Srinivasan, M., Ruina, A., 2006. Computer optimization of a minimal biped model discovers
walking and running. Nature 439 (7072), 72.
Su, J.L.-S., Dingwell, J.B., 2007. Dynamic stability of passive dynamic walking on an
irregular surface. J. Biomech. Eng. 129 (6), 802–810.
Terrier, P., 2016. Fractal fluctuations in human walking: comparison between auditory and
visually guided stepping. Ann. Biomed. Eng. 44 (9), 2785–2793.
e
Terrier, P., D riaz, O., 2012. Persistent and anti-persistent pattern in stride-to-stride variabil-
ity of treadmill walking: influence of rhythmic auditory cueing. Hum. Mov. Sci. 31 (6),
1585–1597.