Page 50 - Control Theory in Biomedical Engineering
P. 50
Modeling and control in physiology 37
Del Giudice, M., 2015. Self-regulation in an evolutionary perspective. In: Handbook of Bio-
behavioral Approaches to Self-Regulation. New York, NY, Springer New York,
pp. 25–41.
Derrick, J.L., Thompson, C.L., Short, T.G., 1998. The application of a modified
proportional-derivative control algorithm to arterial pressure alarms in anesthesiology.
J. Clin. Monit. Comput. 14 (1), 41–47.
Devasahayam, R., 2012. Signals and Systems in Biomedical Engineering: Signal Processing
and Physiological Systems Modeling. Springer Science & Business Media.
Devasahayam, S.R., 2019. Neuromuscular control: spinal reflex and movement. In: Signals
and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal
Processing. Springer Singapore, Singapore, pp. 387–409.
Dutta, S., Kushner, T., Sankaranarayanan, S., 2018. Robust data-driven control of artificial
pancreas systems using neural networks. In: International Conference on Computa-
tional Methods in Systems Biology. Springer International Publishing, Cham,
pp. 183–202.
Eberle, C., Ament, C., 2012. Identifiability and online estimation of diagnostic parameters
with in the glucose insulin homeostasis. Biosystems 107 (3), 135–141.
Edelstein-Keshet, L., 2005. Mathematical Models in Biology. Society for Industrial and
Applied Mathematics.
Elbert, T., et al., 1994. Chaos and physiology: deterministic chaos in excitable cell assemblies.
Physiol. Rev. 74 (1), 1–47.
Enderle, J., Bronzino, J., 2012. Introduction to Biomedical Engineering. Academic Press,
Oxford, USA.
Erkelens, I.M., et al., 2020. A differential role for the posterior cerebellum in the adaptive
control of convergence eye movements. Brain Stimulation 13 (1), 215–228.
Fong, L.E., Mun ˜oz-Rojas, A.R., Miller-Jensen, K., 2018. Advancing systems immunology
through data-driven statistical analysis. Curr. Opin. Biotechnol. 52, 109–115.
Freeman, W.J., 1992. Tutorial on neurobiology: from single neurons to brain chaos. Int. J.
Bifurcat. Chaos 02 (03), 451–482.
Gałach, M., 2003. Dynamics of the tumor—immune system competition—the effect of time
delay. Int. J. Appl. Math. Comput. Sci. 13, 395–406.
Galvanin, F., Ballan, C.C., Barolo, M., Bezzo, F., 2013. A general model-based design of
experiments approach to achieve practical identifiability of pharmacokinetic and phar-
macodynamic models. J. Pharmacokinet. Pharmacodyn. 40 (4), 451–467.
Gani, A., et al., 2009. Predicting subcutaneous glucose concentration in humans: data-driven
glucose modeling. IEEE Trans. Biomed. Eng. 56 (2), 246–254.
Garcia-Sevilla, F., et al., 2012a. Linear compartmental systems: II-A software to obtain the
symbolic kinetic equations. J. Math. Chem. 50 (6), 1625–1648.
Garcia-Sevilla, F., et al., 2012b. Linear compartmental systems. I. kinetic analysis and deri-
vation of their optimized symbolic equations. J. Math. Chem. 50 (6), 1598–1624.
Ghafarian, P., Jamaati, H., Hashemian, S.M., 2016. A review on human respiratory model-
ing. Tanaffos 15 (2), 61–69.
Giannakis, G.B., Serpedin, E., 2001. A bibliography on nonlinear system identification. Sig-
nal Process. 81 (3), 533–580.
Ginoux, J.-M., et al., 2018. Is type 1 diabetes a chaotic phenomenon? Chaos, Solitons Fractals
111, 198–205.
Ginsberg, B.H., Mauseth, R., 2019. The artificial pancreas. In: The Diabetes Textbook.
Springer International Publishing, Cham, pp. 993–998.
Glass, L., 2001. Synchronization and rhythmic processes in physiology. Nature 410 (6825),
277–284.
Glass, L., Beuter, A., Larocque, D., 1988. Time delays, oscillations, and chaos in physiolog-
ical control systems. Math. Biosci. 90 (1–2), 111–125.