Page 52 - Control Theory in Biomedical Engineering
P. 52

Modeling and control in physiology  39


              Larrabide, I., et al., 2012. HeMoLab—hemodynamics modeling laboratory: an application
                 for modeling the human cardiovascular system. Comput. Biol. Med. 42 (10), 993–1004.
              Lassoued, A., Boubaker, O., 2016. On new chaotic and hyperchaotic systems: a literature
                 survey. Nonlinear Anal. Model. Control 21 (6), 770–789.
              Leaning, M.S., et al., 1983. Modeling a complex biological system: the human cardiovascular
                 system—1. Methodology and model description. Trans. Inst. Meas. Control. 5 (2), 71–86.
              Leng, G., MacGregor, D.J., 2008. Mathematical modeling in neuroendocrinology.
                 J. Neuroendocrinol. 20 (6), 713–718.
              Li, L., 2015. Bifurcation and chaos in a discrete physiological control system. Appl. Math.
                 Comput. 252, 397–404.
              Liang, F., Liu, H., 2005. A closed-loop lumped parameter computational model for human
                 cardiovascular system. JSME Int. J. Ser. C 48 (4), 484–493.
              Liu, Y., et al., 1994. A new mathematical model of hypothalamo-pituitary-thyroid axis.
                 Math. Comput. Model. 19 (9), 81–90.
              Mackey, M., Glass, L., 1977. Oscillation and chaos in physiological control systems. Science
                 197 (4300), 287–289.
              Mahfouf, M., Abbod, M., Linkens, D., 2001. A survey of fuzzy logic monitoring and control
                 utilisation in medicine. Artif. Intell. Med. 21 (1–3), 27–42.
              Makroglou, A., Li, J., Kuang, Y., 2006. Mathematical models and software tools for the
                 glucose-insulin regulatory system and diabetes: an overview. Appl. Numer. Math.
                 56 (3), 559–573.
              Mari, A., 2002. Mathematical modeling in glucose metabolism and insulin secretion. Curr.
                 Opin. Clin. Nutr. Metab. Care 5 (5), 495–501.
              Marmarelis, V.Z., 2004. Nonlinear Dynamic Modeling of Physiological Systems,
                 John Wiley & Sons, Inc., Hoboken, NJ, USA.
              Marmarelis, P.Z., Marmarelis, V.Z., 1978. Analysis of Physiological Systems: The White-
                 Noise Approach. Springer Science & Business Media. Springer US, Boston, MA.
              Mayer, H., Zaenker, K.S., an der Heiden, U., 1995. A basic mathematical model of the
                 immune response. Chaos 5 (1), 155–161.
              Miao, H., et al., 2011. On identifiability of nonlinear ODE models and applications in viral
                 dynamics. SIAM Rev. 53 (1), 3–39.
              Miller, M.A., et al., 2015. Leadless cardiac pacemakers. J. Am. Coll. Cardiol. 66 (10),
                 1179–1189.
              Misgeld, B.J.E., et al., 2016. Estimation of insulin sensitivity in diabetic G€ottingen Minipigs.
                 Control. Eng. Pract. 55, 80–90.
              Morari, M., Gentilini, A., 2001. Challenges and opportunities in process control: biomedical
                 processes. AICHE J. 47 (10), 2140–2143.
              Nath, A., et al., 2018. Blood glucose regulation in type 1 diabetic patients: an adaptive para-
                 metric compensation control-based approach. IET Syst. Biol. 12 (5), 219–225.
              Nazarimehr, F., et al., 2017. Can Lyapunov exponent predict critical transitions in biological
                 systems? Nonlinear Dyn. 88 (2), 1493–1500.
              Neave, N., 2008. Hormones and Behaviour: A Psychological Approach. Cambridge Uni-
                 versity Press, Cambridge. ISBN 978-0521692014.
              Nemoto, Y., Ogawa, K., Yoshikawa, M., 2018. F3Hand: a five-fingered prosthetic hand
                 driven with curved pneumatic artificial muscles. In: 2018 40th Annual International Confer-
                 ence of the IEEE Engineering in Medicine and Biology Society (EMBC).IEEE,pp. 1668–1671.
              Noble, D., 1960. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley
                 equations. Nature 188, 495–497.
              Novak, D., Riener, R., 2015. A survey of sensor fusion methods in wearable robotics.
                 Robot. Auton. Syst. 73, 155–170.
              Ottesen, J., Danielsen, M., 2000. Mathematical Modeling in Medicine. ISO Press.
   47   48   49   50   51   52   53   54   55   56   57