Page 54 - Control Theory in Biomedical Engineering
P. 54
Modeling and control in physiology 41
Rupnik, M., Runovc, F., Kordas ˇ, M., 2001. The use of equivalent electronic circuits in sim-
ulating physiological processes. IEEE Trans. Educ. 44 (4), 384–389.
Sachs, R.K., Hlatky, L.R., Hahnfeldt, P., 2001. Simple ODE models of tumor growth and
anti-angiogenic or radiation treatment. Math. Comput. Model. 33 (12–13), 1297–1305.
Sanft, R., Walter, A., 2020. Exploring Mathematical Modeling in Biology Through Case
Studies and Experimental Activities. Academic Press.
Sarbadhikari, S.N., Chakrabarty, K., 2001. Chaos in the brain: a short review alluding to epi-
lepsy, depression, exercise and lateralization. Med. Eng. Phys. 23 (7), 447–457.
Sato, D., et al., 2019. A stochastic model of ion channel cluster formation in the plasma mem-
brane. J. Gen. Physiol. 151 (9), 1116–1134.
Schiff, S.J., et al., 1994. Controlling chaos in the brain. Nature 370 (6491), 615–620.
Schulkin, J., Sterling, P., 2019. Allostasis: a brain-centered, predictive mode of physiological
regulation. Trends Neurosci. Elsevier Current Trends. 42 (10), 740–752.
Sever, M., et al., 2014. The use of equivalent electronic circuits in physiology teaching.
In: Information Technology Based Proceedings of the Fifth International Conference on Higher
Education and Training, pp. 593–597.
Shabestari, P.S., et al., 2018. A new chaotic model for glucose-insulin regulatory system.
Chaos, Solitons Fractals 112, 44–51.
Sharma, V., 2009. Deterministic chaos and fractal complexity in the dynamics of cardiovas-
cular behavior: perspectives on a new frontier. Open Cardiovasc. Med. J. 3 (1), 110–123.
Shi, Y., Lawford, P., Hose, R., 2011. Review of zero-D and 1-D models of blood flow in the
cardiovascular system. BioMed. Eng. OnLine 10 (1), 33.
Shi, Y., et al., 2016. Online estimation method for respiratory parameters based on a pneu-
matic model. In: Transactions on Computational Biology and Bioinformatics,
pp. 939–946.
Shim, E.B., Sah, J.Y., Youn, C.H., 2004. Mathematical modeling of cardiovascular system
dynamics using a lumped parameter method. Jpn. J. Physiol. 54 (6), 545–553.
Similowski, T., Bates, J.H.T., 1991. Two-compartment modeling of respiratory system
mechanics at low frequencies: gas redistribution or tissue rheology? Eur. Respir. J.
4 (3), 353–358.
Smith, P., Cohn, W., Frazier, O., 2018. Total artificial hearts. In: Mechanical Circulatory
and Respiratory Support, pp. 221–244.
Sotolongo-Costa, O., et al., 2003. Behavior of tumors under nonstationary therapy. Physica
D 178 (3–4), 242–253.
Staub, J.F., et al., 2003. A nonlinear compartmental model of Sr metabolism. I. Non-steady-
state kinetics and model building. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (3),
R819–R834.
Swan, G.W., 1981. Optimal control applications in biomedical engineering—a survey. Opti-
mal Control Appl. Methods 2 (4), 311–334.
Takeuchi, Y., Iwasa, Y., Sato, K., 2007. Mathematics for Life Science and Medicine.
Springer Science & Business Media.
Toker, D., et al., 2020. A simple method for detecting chaos in nature. Commun. Biol. 3 (1),
1–13.
Tong, Y.L., 1976. Parameter estimation in studying circadian rhythms. Biometrics 32 (1), 85.
Tuncer, N., et al., 2016. Structural and practical identifiability issues of immuno-
epidemiological vector–host models with application to rift valley fever. Bull. Math.
Biol. 78 (9), 1796–1827.
Turksoy, K., Cinar, A., 2014. Adaptive control of artificial pancreas systems—a review.
J. Healthc. Eng. 5 (1), 1–22.
Valle, P.A., et al., 2018. Bounding the dynamics of a chaotic-cancer mathematical model.
Math. Probl. Eng. 2018, 1–14.