Page 51 - Control Theory in Biomedical Engineering
P. 51
38 Control theory in biomedical engineering
Glynn, P., Unudurthi, S., Hund, T., 2014. Mathematical modeling of physiological systems:
an essential tool for discovery. Life Sci. 111 (1), 1–5.
Goldberger, A.L., West, B.J., 1987. Chaos in physiology: health or disease? In: Chaos in Bio-
logical Systems. Springer, Boston, MA, pp. 1–4.
Goldberger, A.L., Rigney, D.R., West, B.J., 1990. Science in pictures: chaos and fractals in
human physiology. Sci. Am. 262 (2), 42–49.
Grigorieva, E., Khailov, E., 2018. Optimal strategies for psoriasis treatment. Mathematical
and Computational Applications 23 (3), 45–75.
Grodins, F.S., 1959. Integrative cardiovascular physiology: a mathematical synthesis of car-
diac and blood vessel hemodynamics. Q. Rev. Biol. 34 (2), 93–116.
Hacısalihzade, S., 2013. Biomedical Applications of Control Engineering. Springer.
Hajizadeh, I., et al., 2018. Adaptive model predictive control for nonlinearity in biomedical
applications. IFAC-PapersOnLine 51 (20), 368–373.
Heldt, T., Verghese, G.C., Mark, R.G., 2013. Mathematical Modeling of Physiological Sys-
tems. Springer, Berlin, Heidelberg, pp. 21–41.
Hester, R.L., et al., 2011. HumMod: A modeling environment for the simulation of inte-
grative human physiology. Front. Physiol. 2, 12.
Ho, Y., 2019. Parameter Estimation for Nonlinear Mathematical Model. Springer,
Singapore, pp. 69–80.
Houk, J.C., 1988. Control strategies in physiological systems. FASEB J. 2 (2), 97–107.
Houk, J.C., Rymer, W.Z., 2011. Neural control of muscle length and tension.
In: Comprehensive Physiology. John Wiley & Sons, Inc., Hoboken, NJ, USA.
Huang, H., Hu, S., Sun, Y., 2019. A discrete curvature estimation based low-distortion adap-
tive savitzky–golay filter for ECG denoising. Sensors 19 (7), 1617.
Iii, F.J.D., et al., 2011. Control in biological systems. In: The Impact of Control Technology.
Ismail, L., et al., 2018. Circuit modeling and analysis of cardiovascular system using analog
circuit analogy. In: International Conference on Intelligent and Advanced System.
Itik, M., Banks, S.P., 2010. Chaos in a three-dimensional cancer model. Int. J. Bifurcat.
Chaos 20 (01), 71–79.
Jacquez, A., 1972. Compartmental Analysis in Biology and Medicine. Elsevier, Amsterdam.
Jiao, D., et al., 2020. The chaotic characteristics detection based on multifractal detrended
fluctuation analysis of the elderly 12-lead ECG signals. Physica A: Statistical Mechanics
and its Applications. North-Holland, 540, 123234.
Joe, H.M., Oh, J.H., 2019. A robust balance-control framework for the terrain-blind bipedal
walking of a humanoid robot on unknown and uneven terrain. Sensors 19 (19), 4194.
Kabanikhin, S.I., et al., 2016. Identifiability of mathematical models in medical biology.
Russ. J. Genet. Appl. Res. 6 (8), 838–844.
Kansal, A.R., 2004. Modeling approaches to type 2 diabetes. Diabetes Technol. Ther. 6 (1),
39–47.
Karim, A., et al., 2018. A New Automatic Epilepsy Serious Detection Method by Using
Deep Learning Based on Discrete Wavelet Transform.
Khoo, M.C.K., 1999. Physiological Control Systems, Physiological Control Systems: Anal-
ysis, Simulation, and Estimation, second ed. IEEE.
Kim, S., et al., 2009. Postural feedback scaling deficits in Parkinson’s disease. J. Neurophysiol.
102 (5), 2910–2920.
Kokalari, I., Karaja, T., Guerrisi, M., 2013. Review on lumped parameter method for
modeling the blood flow in systemic arteries. J. Biomed. Sci. Eng. 6 (1), 16.
Kulkarni, V., 2016. Modeling and Analysis of Stochastic Systems. Chapman and Hall/CRC.
Kuttler, C., 2009. Mathematical Models in Biology.
La Perle, K.M.D., Dintzis, S.M., 2018. Endocrine system. In: Comparative Anatomy and
Histology. Elsevier, pp. 251–273.