Page 125 - DSP Integrated Circuits
P. 125
110 Chapters Digital Signal Processing
[33] Ramirez R.W.: The FFT, Prentice Hall, Englewood Cliffs, NJ, 1985.
[34] Rao K.R. and Yip P.: Discrete Cosine Transform, Algorithms, Advantages,
Applications, Academic Press, Boston, 1990.
[35] Rosel P.: Timing of some Bit Reversal Algorithms, Signal Processing, Vol. 18,
No. 4, pp. 425-433, Dec. 1989.
[36] Sibul L.H. (ed.): Adaptive Signal Processing, IEEE Press, 1987.
[37] Sikstrom B.: On the LSI Implementation of Wave Digital Filters and discrete
cosine transforms, Linkoping Studies in Science and Technology, Diss. No.
143, Linkoping University, Sweden, May 1986.
[38] Sikstrom B., Afghahi M., Wanhammar L., and Pencz J.: A High Speed 2-D
Discrete Cosine Transform Chip, Integration, the VLSI Journal, Vol. 5, No. 2,
pp. 159-169, June 1987.
[39] Stearns S.D. and David R.A.: Signal Processing Algorithms, Prentice Hall,
Englewood Cliffs, NJ, 1988.
[40] Taylor F. J. -.Digital Filter Design Handbook, Marcel Dekker, New York, 1983.
[41] Uramoto S., Inue Y, Takabatake A., Takeda J., Yamashita Y, Terane H., and
Yoshimoto M.: A 100 MHz 2-D Discrete Cosine Transform Core Processor,
IEEE J. Solid-State, Vol. 27, No. 4, pp. 492-499, April 1992.
[42] Vetterli M.: Fast 2-D Discrete Cosine Transform, IEEE Intern. Conf. Acoust.,
Speech, and Signal Processing, ICASSP-85, Tampa, pp. 1538-1541,1985.
[43] Wallace G.K.: The JPEG Picture Compression Standard, IEEE Trans, on
Consumer Electronics, Vol. 38, No. 1, Feb. 1992.
[44] Wang Z.: Fast Algorithms for the Discrete W Transform and for the Fourier
Transform, IEEE Trans. Acoust., Speech, and Signal Processing, Vol. ASSP-
32, No. 4, pp. 803-816, Aug. 1984.
[45] Kou W. and Mark J.W.: A New Look at DCT-Type Transforms, IEEE Trans.
on Acoustics, Speech, and Signal Processing, Vol. ASSP-37, No. 12, pp. 1899-
1908, Dec. 1989.
PROBLEMS
3.1 Determine the Fourier transform of
n
(a) x(n) = a for n > 0 and = 0 otherwise.
n
(b) x(n) = -a for n < 0 and = 0 otherwise.
3.2 Determine the period and ^-transform of the following sequences:
3.3 Show that if X(z) is the z-transform of the sequence x(n) then the following
relationships hold: