Page 11 -
P. 11

x      Contents   HAN 03-toc-ix-xviii-9780123814791  2011/6/1  3:32 Page x  #2



                           1.6   Which Kinds of Applications Are Targeted?  27
                                 1.6.1  Business Intelligence  27
                                 1.6.2  Web Search Engines  28
                           1.7   Major Issues in Data Mining  29
                                 1.7.1  Mining Methodology  29
                                 1.7.2  User Interaction  30
                                 1.7.3  Efficiency and Scalability  31
                                 1.7.4  Diversity of Database Types  32
                                 1.7.5  Data Mining and Society  32
                           1.8   Summary    33
                           1.9   Exercises 34
                           1.10  Bibliographic Notes  35
                 Chapter 2 Getting to Know Your Data 39
                           2.1   Data Objects and Attribute Types  40
                                 2.1.1  What Is an Attribute?  40
                                 2.1.2  Nominal Attributes 41
                                 2.1.3  Binary Attributes 41
                                 2.1.4  Ordinal Attributes 42
                                 2.1.5  Numeric Attributes 43
                                 2.1.6  Discrete versus Continuous Attributes  44
                           2.2   Basic Statistical Descriptions of Data  44
                                 2.2.1  Measuring the Central Tendency: Mean, Median, and Mode  45
                                 2.2.2  Measuring the Dispersion of Data: Range, Quartiles, Variance,
                                       Standard Deviation, and Interquartile Range 48
                                 2.2.3  Graphic Displays of Basic Statistical Descriptions of Data  51
                           2.3   Data Visualization  56
                                 2.3.1  Pixel-Oriented Visualization Techniques  57
                                 2.3.2  Geometric Projection Visualization Techniques  58
                                 2.3.3  Icon-Based Visualization Techniques  60
                                 2.3.4  Hierarchical Visualization Techniques 63
                                 2.3.5  Visualizing Complex Data and Relations  64
                           2.4   Measuring Data Similarity and Dissimilarity 65
                                 2.4.1  Data Matrix versus Dissimilarity Matrix 67
                                 2.4.2  Proximity Measures for Nominal Attributes 68
                                 2.4.3  Proximity Measures for Binary Attributes  70
                                 2.4.4  Dissimilarity of Numeric Data: Minkowski Distance  72
                                 2.4.5  Proximity Measures for Ordinal Attributes 74
                                 2.4.6  Dissimilarity for Attributes of Mixed Types  75
                                 2.4.7  Cosine Similarity  77
                           2.5   Summary    79
                           2.6   Exercises  79
                           2.7   Bibliographic Notes 81
   6   7   8   9   10   11   12   13   14   15   16