Page 16 -
P. 16

2011/6/1 3:32
                                                                          Page xv #7
                           HAN 03-toc-ix-xviii-9780123814791
                                                                                       Contents   xv



                                 8.5   Model Evaluation and Selection  364
                                       8.5.1  Metrics for Evaluating Classifier Performance  364
                                       8.5.2  Holdout Method and Random Subsampling  370
                                       8.5.3  Cross-Validation  370
                                       8.5.4  Bootstrap  371
                                       8.5.5  Model Selection Using Statistical Tests of Significance  372
                                       8.5.6  Comparing Classifiers Based on Cost–Benefit and ROC Curves 373
                                 8.6   Techniques to Improve Classification Accuracy  377
                                       8.6.1  Introducing Ensemble Methods 378
                                       8.6.2  Bagging 379
                                       8.6.3  Boosting and AdaBoost 380
                                       8.6.4  Random Forests  382
                                       8.6.5  Improving Classification Accuracy of Class-Imbalanced Data  383
                                 8.7   Summary    385
                                 8.8   Exercises 386
                                 8.9   Bibliographic Notes  389
                       Chapter 9 Classification: Advanced Methods  393
                                 9.1   Bayesian Belief Networks  393
                                       9.1.1  Concepts and Mechanisms  394
                                       9.1.2  Training Bayesian Belief Networks  396
                                 9.2   Classification by Backpropagation 398
                                       9.2.1  A Multilayer Feed-Forward Neural Network  398
                                       9.2.2  Defining a Network Topology  400
                                       9.2.3  Backpropagation  400
                                       9.2.4  Inside the Black Box: Backpropagation and Interpretability  406
                                 9.3   Support Vector Machines  408
                                       9.3.1  The Case When the Data Are Linearly Separable 408
                                       9.3.2  The Case When the Data Are Linearly Inseparable  413
                                 9.4   Classification Using Frequent Patterns 415
                                       9.4.1  Associative Classification  416
                                       9.4.2  Discriminative Frequent Pattern–Based Classification  419
                                 9.5   Lazy Learners (or Learning from Your Neighbors)  422
                                       9.5.1  k-Nearest-Neighbor Classifiers  423
                                       9.5.2  Case-Based Reasoning 425
                                 9.6   Other Classification Methods  426
                                       9.6.1  Genetic Algorithms  426
                                       9.6.2  Rough Set Approach 427
                                       9.6.3  Fuzzy Set Approaches  428
                                 9.7   Additional Topics Regarding Classification 429
                                       9.7.1  Multiclass Classification  430
   11   12   13   14   15   16   17   18   19   20   21