Page 18 -
P. 18

#9
                                                                          Page xvii
                                                            2011/6/1 3:32
                           HAN 03-toc-ix-xviii-9780123814791
                                                                                       Contents  xvii



                                       11.1.2 Probabilistic Model-Based Clusters  501
                                       11.1.3 Expectation-Maximization Algorithm  505
                                 11.2  Clustering High-Dimensional Data  508
                                       11.2.1 Clustering High-Dimensional Data: Problems, Challenges,
                                             and Major Methodologies  508
                                       11.2.2 Subspace Clustering Methods  510
                                       11.2.3 Biclustering  512
                                       11.2.4 Dimensionality Reduction Methods and Spectral Clustering 519
                                 11.3  Clustering Graph and Network Data   522
                                       11.3.1 Applications and Challenges 523
                                       11.3.2 Similarity Measures 525
                                       11.3.3 Graph Clustering Methods  528
                                 11.4  Clustering with Constraints 532
                                       11.4.1 Categorization of Constraints 533
                                       11.4.2 Methods for Clustering with Constraints  535
                                 11.5  Summary    538
                                 11.6  Exercises 539
                                 11.7  Bibliographic Notes  540

                       Chapter 12 Outlier Detection 543
                                 12.1  Outliers and Outlier Analysis 544
                                       12.1.1 What Are Outliers? 544
                                       12.1.2 Types of Outliers 545
                                       12.1.3 Challenges of Outlier Detection  548
                                 12.2  Outlier Detection Methods  549
                                       12.2.1 Supervised, Semi-Supervised, and Unsupervised Methods 549
                                       12.2.2 Statistical Methods, Proximity-Based Methods, and
                                             Clustering-Based Methods 551
                                 12.3  Statistical Approaches  553
                                       12.3.1 Parametric Methods  553
                                       12.3.2 Nonparametric Methods 558
                                 12.4  Proximity-Based Approaches   560
                                       12.4.1 Distance-Based Outlier Detection and a Nested Loop
                                             Method  561
                                       12.4.2 A Grid-Based Method  562
                                       12.4.3 Density-Based Outlier Detection  564
                                 12.5  Clustering-Based Approaches 567
                                 12.6  Classification-Based Approaches  571
                                 12.7  Mining Contextual and Collective Outliers  573
                                       12.7.1 Transforming Contextual Outlier Detection to Conventional
                                             Outlier Detection 573
   13   14   15   16   17   18   19   20   21   22   23