Page 14 -
P. 14
2011/6/1 3:32
Page xiii
#5
HAN 03-toc-ix-xviii-9780123814791
Contents xiii
5.2.2 BUC: Computing Iceberg Cubes from the Apex Cuboid
Downward 200
5.2.3 Star-Cubing: Computing Iceberg Cubes Using a Dynamic
Star-Tree Structure 204
5.2.4 Precomputing Shell Fragments for Fast High-Dimensional OLAP 210
5.3 Processing Advanced Kinds of Queries by Exploring Cube
Technology 218
5.3.1 Sampling Cubes: OLAP-Based Mining on Sampling Data 218
5.3.2 Ranking Cubes: Efficient Computation of Top-k Queries 225
5.4 Multidimensional Data Analysis in Cube Space 227
5.4.1 Prediction Cubes: Prediction Mining in Cube Space 227
5.4.2 Multifeature Cubes: Complex Aggregation at Multiple
Granularities 230
5.4.3 Exception-Based, Discovery-Driven Cube Space Exploration 231
5.5 Summary 234
5.6 Exercises 235
5.7 Bibliographic Notes 240
Chapter 6 Mining Frequent Patterns, Associations, and Correlations: Basic
Concepts and Methods 243
6.1 Basic Concepts 243
6.1.1 Market Basket Analysis: A Motivating Example 244
6.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules 246
6.2 Frequent Itemset Mining Methods 248
6.2.1 Apriori Algorithm: Finding Frequent Itemsets by Confined
Candidate Generation 248
6.2.2 Generating Association Rules from Frequent Itemsets 254
6.2.3 Improving the Efficiency of Apriori 254
6.2.4 A Pattern-Growth Approach for Mining Frequent Itemsets 257
6.2.5 Mining Frequent Itemsets Using Vertical Data Format 259
6.2.6 Mining Closed and Max Patterns 262
6.3 Which Patterns Are Interesting?—Pattern Evaluation
Methods 264
6.3.1 Strong Rules Are Not Necessarily Interesting 264
6.3.2 From Association Analysis to Correlation Analysis 265
6.3.3 A Comparison of Pattern Evaluation Measures 267
6.4 Summary 271
6.5 Exercises 273
6.6 Bibliographic Notes 276