Page 15 -
P. 15

xiv    Contents  HAN 03-toc-ix-xviii-9780123814791  2011/6/1  3:32 Page xiv  #6



                 Chapter 7 Advanced Pattern Mining   279
                           7.1   Pattern Mining: A Road Map  279
                           7.2   Pattern Mining in Multilevel, Multidimensional Space  283
                                 7.2.1  Mining Multilevel Associations  283
                                 7.2.2  Mining Multidimensional Associations  287
                                 7.2.3  Mining Quantitative Association Rules  289
                                 7.2.4  Mining Rare Patterns and Negative Patterns  291
                           7.3   Constraint-Based Frequent Pattern Mining  294
                                 7.3.1  Metarule-Guided Mining of Association Rules 295
                                 7.3.2  Constraint-Based Pattern Generation: Pruning Pattern Space
                                       and Pruning Data Space  296
                           7.4   Mining High-Dimensional Data and Colossal Patterns  301
                                 7.4.1  Mining Colossal Patterns by Pattern-Fusion 302
                           7.5   Mining Compressed or Approximate Patterns 307
                                 7.5.1  Mining Compressed Patterns by Pattern Clustering  308
                                 7.5.2  Extracting Redundancy-Aware Top-k Patterns  310
                           7.6   Pattern Exploration and Application  313
                                 7.6.1  Semantic Annotation of Frequent Patterns  313
                                 7.6.2  Applications of Pattern Mining  317
                           7.7   Summary    319
                           7.8   Exercises 321
                           7.9   Bibliographic Notes  323

                 Chapter 8 Classification: Basic Concepts 327
                           8.1   Basic Concepts  327
                                 8.1.1  What Is Classification?  327
                                 8.1.2  General Approach to Classification 328
                           8.2   Decision Tree Induction  330
                                 8.2.1  Decision Tree Induction 332
                                 8.2.2  Attribute Selection Measures 336
                                 8.2.3  Tree Pruning  344
                                 8.2.4  Scalability and Decision Tree Induction  347
                                 8.2.5  Visual Mining for Decision Tree Induction 348
                           8.3   Bayes Classification Methods  350
                                 8.3.1  Bayes’ Theorem  350
                                 8.3.2  Na¨ ıve Bayesian Classification 351
                           8.4   Rule-Based Classification 355
                                 8.4.1  Using IF-THEN Rules for Classification  355
                                 8.4.2  Rule Extraction from a Decision Tree 357
                                 8.4.3  Rule Induction Using a Sequential Covering Algorithm 359
   10   11   12   13   14   15   16   17   18   19   20