Page 17 -
P. 17

xvi    Contents  HAN 03-toc-ix-xviii-9780123814791  2011/6/1  3:32 Page xvi  #8



                                 9.7.2  Semi-Supervised Classification  432
                                 9.7.3  Active Learning  433
                                 9.7.4  Transfer Learning  434
                           9.8   Summary    436
                           9.9   Exercises  438
                           9.10  Bibliographic Notes 439
                 Chapter 10 Cluster Analysis: Basic Concepts and Methods 443
                           10.1  Cluster Analysis 444
                                 10.1.1 What Is Cluster Analysis?  444
                                 10.1.2 Requirements for Cluster Analysis 445
                                 10.1.3 Overview of Basic Clustering Methods  448
                           10.2  Partitioning Methods 451
                                 10.2.1 k-Means: A Centroid-Based Technique  451
                                 10.2.2 k-Medoids: A Representative Object-Based Technique 454
                           10.3  Hierarchical Methods  457
                                 10.3.1 Agglomerative versus Divisive Hierarchical Clustering  459
                                 10.3.2 Distance Measures in Algorithmic Methods 461
                                 10.3.3 BIRCH: Multiphase Hierarchical Clustering Using Clustering
                                       Feature Trees  462
                                 10.3.4 Chameleon: Multiphase Hierarchical Clustering Using Dynamic
                                       Modeling 466
                                 10.3.5 Probabilistic Hierarchical Clustering  467
                           10.4  Density-Based Methods 471
                                 10.4.1 DBSCAN: Density-Based Clustering Based on Connected
                                       Regions with High Density 471
                                 10.4.2 OPTICS: Ordering Points to Identify the Clustering Structure  473
                                 10.4.3 DENCLUE: Clustering Based on Density Distribution Functions 476
                           10.5  Grid-Based Methods   479
                                 10.5.1 STING: STatistical INformation Grid 479
                                 10.5.2 CLIQUE: An Apriori-like Subspace Clustering Method 481
                           10.6  Evaluation of Clustering 483
                                 10.6.1 Assessing Clustering Tendency 484
                                 10.6.2 Determining the Number of Clusters 486
                                 10.6.3 Measuring Clustering Quality 487
                           10.7  Summary    490
                           10.8  Exercises 491
                           10.9  Bibliographic Notes  494

                 Chapter 11 Advanced Cluster Analysis 497
                           11.1  Probabilistic Model-Based Clustering  497
                                 11.1.1 Fuzzy Clusters 499
   12   13   14   15   16   17   18   19   20   21   22