Page 120 - Defrosting for Air Source Heat Pump
P. 120

112                                         Defrosting for Air Source Heat Pump

         References


          [1] Young DJ. Development of a northern climate residential air-source heat pump. ASHRAE
             Trans 1980;86(1):671–86.
          [2] Watters RJ, O’Neal DL, Yang JX. Frost/defrost performance of a three-row fin staged heat
             pump evaporator. ASHRAE Trans 2002;108(2):318–29.
          [3] Yang DK, Lee KS, Song S. Fin spacing optimization of a fin-tube heat exchanger under
             frosting conditions. Int J Heat Mass Transf 2006;49:2619–25.
          [4] Cai L, Wang RH, Hou PX, Zhang XS. Study on restraining frost growth at initial stage by
             hydrophobic coating and hygroscopic coating. Energy Build 2011;43:1159–63.
          [5] Mei VC, Gao Z, Tomlinson JJ. Frost-less heat pump. ASHRAE Trans 2002;108(1):452–9.
          [6] Hu WJ, Jiang YQ, Qu ML, Yao Y, Deng SM. An experimental study on the operating
             performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps.
             Appl Therm Eng 2011;31(2):363–9.
          [7] Qu ML, Xia L, Deng SM, Jiang YQ. Improved indoor thermal comfort during defrost with
             a novel reverse-cycle defrosting method for air source heat pumps. Build Environ 2010;45
             (11):2354–61.
          [8] O’Neal DL, Peterson KT, Anand NK, Schliesing JS. Refrigeration system dynamics dur-
             ing the reversing cycle defrost. ASHRAE Trans 1998;95(2):689–98.
          [9] Qu ML, Xia L, Jiang YQ, Deng SM. A study of the reverse cycle defrosting performance
             on a multi-circuit outdoor coil unit in an air source heat pump-Part I: experiments. Appl
             Energy 2012;91:122–9.
         [10] Wang ZY, Wang XX, Dong ZM. Defrost improvement by heat pump refrigerant charge
             compensating. Appl Energy 2008;85:1050–9.
         [11] Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, Part 1: heat and
             mass transfer theory. ASHRAE Trans 1992;98(1):451–61.
         [12] Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, Part 2: experi-
             mental analysis. ASHRAE Trans 1992;98(1):462–74.
         [13] Krakow KI, Lin S, Yan L. An idealized model of reversed-cycle hot gas defrosting of
             evaporators, Part 1: theory. ASHRAE Trans 1993;99(2):317–28.
         [14] Krakow KI, Lin S, Yan L. An idealized model of reversed-cycle hot gas defrosting of
             evaporators, Part 2: experimental analysis and validation. ASHRAE Trans 1993;99
             (2):329–38.
         [15] Alebrahim AM, Sherif SA. Electrical defrosting analysis of a finned tube evaporator coil
             using the enthalpy method. Proc Inst Mech Eng Part C J Mech Eng Sci 2002;216
             (6):655–73.
         [16] Sherif SA, Hertz MG. A semi-empirical model for electric defrosting of a cylindrical coil
             cooler. Int J Energy Res 1998;22(1):85–92.
         [17] Al-Mutawa NK, Sherif SA. An analytical model for hot-gas defrosting of a cylindrical coil
             cooler, Part I: model development. ASHRAE Trans 1998;104(1):1722–30.
         [18] Al-Mutawa NK, Sherif SA. An analytical model for hot-gas defrosting of a cylindrical coil
             cooler, Part II: model results and conclusions. ASHRAE Trans 1998;104(1):1731–7.
         [19] Liu ZQ, Tang GF, Zhao FY. Dynamic simulation of air source heat pump during hot-gas
             defrost. Appl Therm Eng 2003;23(6):675–85.
         [20] Hoffenbecker N, Klein SA, Reindl DT. Hot gas defrost model development and validation.
             Int J Refrig 2005;28(4):605–15.
         [21] Alberto Dopazo J, Fernandez-Seara J, Uhı ´a FJ, Diz R. Modeling and experimental vali-
             dation of the hot-gas defrost process of an air-cooled evaporator. Int J Refrig 2010;33
             (4):829–39.
   115   116   117   118   119   120   121   122   123   124   125