Page 120 - Defrosting for Air Source Heat Pump
P. 120
112 Defrosting for Air Source Heat Pump
References
[1] Young DJ. Development of a northern climate residential air-source heat pump. ASHRAE
Trans 1980;86(1):671–86.
[2] Watters RJ, O’Neal DL, Yang JX. Frost/defrost performance of a three-row fin staged heat
pump evaporator. ASHRAE Trans 2002;108(2):318–29.
[3] Yang DK, Lee KS, Song S. Fin spacing optimization of a fin-tube heat exchanger under
frosting conditions. Int J Heat Mass Transf 2006;49:2619–25.
[4] Cai L, Wang RH, Hou PX, Zhang XS. Study on restraining frost growth at initial stage by
hydrophobic coating and hygroscopic coating. Energy Build 2011;43:1159–63.
[5] Mei VC, Gao Z, Tomlinson JJ. Frost-less heat pump. ASHRAE Trans 2002;108(1):452–9.
[6] Hu WJ, Jiang YQ, Qu ML, Yao Y, Deng SM. An experimental study on the operating
performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps.
Appl Therm Eng 2011;31(2):363–9.
[7] Qu ML, Xia L, Deng SM, Jiang YQ. Improved indoor thermal comfort during defrost with
a novel reverse-cycle defrosting method for air source heat pumps. Build Environ 2010;45
(11):2354–61.
[8] O’Neal DL, Peterson KT, Anand NK, Schliesing JS. Refrigeration system dynamics dur-
ing the reversing cycle defrost. ASHRAE Trans 1998;95(2):689–98.
[9] Qu ML, Xia L, Jiang YQ, Deng SM. A study of the reverse cycle defrosting performance
on a multi-circuit outdoor coil unit in an air source heat pump-Part I: experiments. Appl
Energy 2012;91:122–9.
[10] Wang ZY, Wang XX, Dong ZM. Defrost improvement by heat pump refrigerant charge
compensating. Appl Energy 2008;85:1050–9.
[11] Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, Part 1: heat and
mass transfer theory. ASHRAE Trans 1992;98(1):451–61.
[12] Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, Part 2: experi-
mental analysis. ASHRAE Trans 1992;98(1):462–74.
[13] Krakow KI, Lin S, Yan L. An idealized model of reversed-cycle hot gas defrosting of
evaporators, Part 1: theory. ASHRAE Trans 1993;99(2):317–28.
[14] Krakow KI, Lin S, Yan L. An idealized model of reversed-cycle hot gas defrosting of
evaporators, Part 2: experimental analysis and validation. ASHRAE Trans 1993;99
(2):329–38.
[15] Alebrahim AM, Sherif SA. Electrical defrosting analysis of a finned tube evaporator coil
using the enthalpy method. Proc Inst Mech Eng Part C J Mech Eng Sci 2002;216
(6):655–73.
[16] Sherif SA, Hertz MG. A semi-empirical model for electric defrosting of a cylindrical coil
cooler. Int J Energy Res 1998;22(1):85–92.
[17] Al-Mutawa NK, Sherif SA. An analytical model for hot-gas defrosting of a cylindrical coil
cooler, Part I: model development. ASHRAE Trans 1998;104(1):1722–30.
[18] Al-Mutawa NK, Sherif SA. An analytical model for hot-gas defrosting of a cylindrical coil
cooler, Part II: model results and conclusions. ASHRAE Trans 1998;104(1):1731–7.
[19] Liu ZQ, Tang GF, Zhao FY. Dynamic simulation of air source heat pump during hot-gas
defrost. Appl Therm Eng 2003;23(6):675–85.
[20] Hoffenbecker N, Klein SA, Reindl DT. Hot gas defrost model development and validation.
Int J Refrig 2005;28(4):605–15.
[21] Alberto Dopazo J, Fernandez-Seara J, Uhı ´a FJ, Diz R. Modeling and experimental vali-
dation of the hot-gas defrost process of an air-cooled evaporator. Int J Refrig 2010;33
(4):829–39.