Page 357 - Defrosting for Air Source Heat Pump
P. 357

Appendices                                                        353

              swatertray=zeros(45,3); % the total mass of water flowing away from
              the water collecting tray in the 5 seconds, kg
              s_qr2=zeros(45,3); % the energy taken in the refrigerant, J
              hro=zeros(45,3); % the enthalpy value of output refrigerant, kJ/kg
              % list the unknown parameters, and initialize these parameters with
              zeroes

              for i=1:3 % three circuits in this study based on the experiment
              results
              for j=1:18 % about 18*5 seconds in the first two stages, obtained
              from the experimental results
              if j==1
                 khri=hri(j,i); % , kJ/kg
                 kMr=Mr(j,i); % kg / s
                 kTri=Tri(j,1); % °C
                                   2
                 kRr=Rr(j,i); %(K˙m )/W
                 ksmrw=0.0001; % the total retained water at the beginning is
              0 kg, choose 0.0001 as the value for debugging, kg
                 kTw1=0.01; % the temperature of the melted frost at the begin-
              ning is 0 °C, choose 0 °C as the value for debugging
                 % all the input parameters in the function listed here
                 x0=[0.0001 0.0001 0.01 1200 0.001]; % mf=x(1), mrw=x(2),
              Tw=x(3); qr=x(4); Tro=x(5) the values of debugging
                 options=optimset(’display’,’off’,’MaxIter’,100000,
              ’MaxFunEvals’,20000); % number
                 [A,fval,exit]=fsolve(@(x)mystage1(x,ksmrw,kTw1,i,kRr,kTri,
              khri,kMr),x0,options); % x, ksmrw, kTw1, i, kTri, kRr, kqr
                 mf(j,i)=A(1); % the mass of melted frost, kg/s
                 mrw(j,i)=A(2); % the mass of retained water, kg/s
                 Tw(j,i)=A(3); % the temperature of retained water, °C
                 qr(j,i)=A(4); % the energy used in defrosting from refrigerant, W
                 Tro(j,i)=A(5); % the temperature of tube surface at exit of each
              circuit, °C
                 A;
                 x00=real(A);
                 fval
                 exit
                 qm(j,i)=334000*mf(j,i); % W
                 sfrost(j,i)=5*sum(mf(:,i)); % kg
                 mvaw(j,i)=0; % kg/s
                 smvaw(j,i)=5*sum(mvaw(:,i)); % kg
                 qvap(j,i)=mvaw(j,i)*2443*1000; % J
                 s_qvap(j,i)=sum(qvap(:,i))*5; % J
                 watertray(j,i)=0; % kg/s
                 swatertray(j,i)=sum(watertray(:,i)); % kg
   352   353   354   355   356   357   358   359   360   361   362