Page 362 - Defrosting for Air Source Heat Pump
P. 362

358                                                          Appendices

               % density of gas at interface (saturation density), kg/m 3

               kTri=Tri(j,i); % °C
                                 2
               kRr=Rr(j,i); % (K m )/W
               kMr=Mr(j,i); % kg/s
               khri=hri(j,i); % kJ/kg
                % all the input parameters in the function listed here
               x0=[0.0042 0.0042 0.335 1200 0.001];
               options=optimset(’display’,’off’,’MaxIter’,10000,
            ’MaxFunEvals’,20000); % number
               [A,fval,exit]=fsolve(@(x)mystage41(x,kTw1,mr0,smvaw,i,
            denspipe,dens_air,kTri,kRr,kMr,khri),x0,options);
               mrw(j,i)=A(1); % retained water, kg/s
               mvaw(j,i)=A(2); % vaporized water, kg/s
               Tw(j,i)=A(3); % retained water temperature, °C
               qr(j,i)=A(4); % energy used in defrosting from refrigerant, W
               Tro(j,i)=A(5); % the temperature of tube surface at exit of each
            circuit, °C
               A
               x00=real(A);
               fval
               exit
                                                       2
                hair(j,i)=1.4748.*Tri(j,1).^(1/3); % W/(m °C)
               qair(j,i)=1.4748.*Tri(j,1).^(4/3).*2.6852*2.5*2; % W
               s_qair(j,i)=sum(qair(:,i))*5; % W
                                                               2
               hd(j,i)=hair(j,i)/1005./1.258./0.845^(2/3); % W/(m °C)
               smvaw(j,i)=5.*sum(mvaw(:,i)); % kg
               qm(j,i)=334000.*mf(j,i); % W
               qvap(j,i)=mvaw(j,i)*2443*1000; % W
               s_qvap(j,i)=sum(qvap(:,i))*5; % W
               watertray(j,i)=0; % kg/s
               swatertray(j,i)=sum(watertray(:,i)); % kg
               hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
            1000*Tro(j,i)^3;
            % kJ/kg
               qr2(j,i)=kMr*(khri-hro(j,i)); % W
               s_qr2(j,i)=sum(qr2(:,i))*5; % W
              end
             end
            end
            % here is the end of stage 4 for Circuit 1: water layer evaporating
            stage
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

            for i=2
               for j=18:45
                  % for the 18*5 seconds for the 2nd circuit;
   357   358   359   360   361   362   363   364   365   366   367