Page 364 - Defrosting for Air Source Heat Pump
P. 364

360                                                          Appendices

              if sfrost(j,i)>=0.35;
                 sfrost(j,i)=0.35; % kg
                 mf(j,i)=0; % at fourth stage, the mf is always 0 kg/s
                 kTw1=Tw(j-1,i); % the initial values are different for each
            circuit, °C
                 mr0=0.008 ; % the water left on the first coil, kg/s
                 smvaw=smvaw(j-1,i); % at the beginning of this stage,
            it is 0 kg
                 % Coef7=-5800.2206;
                 % Coef8=1.3914993;
                 % Coef9=-0.04860239;
                 % Coef10=0.000041764768;
                 % Coef11=-0.000000014452093;
                 % Coef12=6.5459673;
                 T=Tri(j,i)+273.15; % K
                 denspipe=exp(-5800.2206*T.^(-1)+1.3914993*T.^(0)-
            0.04860239*T.^(1)+0.000041764768*T.^(2)-0.000000014452093*T.^(3)
            +6.5459673*log(T))/(8314./18.*T);
                 % calculate the density of humidity air, kg/m 3
                 Tair=0+273.15;% K; %Tair=0; % °C;
                 PwSat_Air=exp(-5800.2206*Tair.^(-1)+1.3914993*Tair.^(0)-
            0.04860239*Tair.^(1)+0.000041764768*Tair.^(2)-
            0.000000014452093*Tair.^(3)+6.5459673*log(Tair)); % Pa;
                 dens_air=0.80*PwSat_Air/(8314/18*(273.15+0));
                 % relative_Humi_air=0.80;
                 % 0.0039 density of component outside boundary layer, kg/m 3
                 % PwSat_pipeAir(1,t)=Pressure_Air_Water(Tr(1,t));
                 % dens_pipe(c,t)=Pressure_Air_Water(Tw(c,t-1)).*10^6./
            (8314./18.*(273.15+Tw(c,t-1)));
                 % density of gas at interface (saturation density), kg/m 3

                 kTri=Tri(j,i); % °C
                                   2
                 kRr=Rr(j,i); % (K m )/W
                 kMr=Mr(j,i); % kg/s
                 khri=hri(j,i); % kJ/kg
                 % all the input parameters in the function listed here
                 x0=[0.0042 0.0042 0.335 1200 0.001];
                 options=optimset(’display’,’off’,’MaxIter’,10000,
            ’MaxFunEvals’,20000); % number
                 [A,fval,exit]=fsolve(@(x)mystage42(x,kTw1,mr0,smvaw,i,
            denspipe,dens_air,kTri,kRr,kMr,khri),x0,options);
                 mrw(j,i)=A(1); % retained water, kg/s;
                 mvaw(j,i)=A(2); % vaporized water, kg/s;
                 Tw(j,i)=A(3); % retained water temperature, °C;
                 qr(j,i)=A(4); % energy used in defrosting from refrigerant, W;
                 Tro(j,i)=A(5); % the temperature of tube surface at exit of
            each circuit, °C
   359   360   361   362   363   364   365   366   367   368   369