Page 368 - Defrosting for Air Source Heat Pump
P. 368
364 Appendices
hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
1000*Tro(j,i)^3;
2
% W/(K m )
qr2(j,i)=kMr*(khri-hro(j,i)); % W
s_qr2(j,i)=sum(qr2(:,i))*5; % W
end
end
end
% here is the end of stage 4 for Circuit 3: water layer evaporating
stage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:3
s_qm=0.350*3*334000; % this is fixed value for different cases, W
s_qvap1=sum(s_qvap(37,:)); % W
s_qr1=sum(s_qr2(37,:))*0.65; % W
s_qair1=sum(s_qair(37,:)); % W
s_q_heatingmeltedfrost=sum(swatertray(45,:)*Tw(32,3)
*4.2*1000); % W
Defrostingefficiency=(s_qm+s_qvap1)/s_qr1; % 1
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The following programs are function programs used in the previous
main program.
function F=mystage1(x,ksmrw,kTw1,i,kRr,kTri,khri,kMr)
% solve mf=x(1), mw=x(2), Tw=x(3), qr=x(4), kRr=x(5)
F=[x(1)-x(2); % kg/s
x(4)-334000.*x(1)-4195.2.*x(2).*x(3)-4195.2.*ksmrw.*(x(3)-kTw1);
% J/s
334000.*x(1)-1480.54.*((i+1)^0.5-i^0.5).*2.6852*2.5*x(3); % 0.85
stand for the water side modification
x(4)-0.0679*(kTri-2.*x(3))./(kRr+3.6316e-06); % 0.55 is the modi-
fication value of refrigerant side
x(4)-0.32*kMr*(khri-44518-1170.36*x(5)-1.68674*x(5)^2-5.2703/
1000*x(5)^3)] %0.40 make the s-frost suitable. % -5.2703/
1000*kTro^3, W
end
function F=mystage2(x,ksmrw,kTw1,i,kRr,kTri,khri,kMr)
% solve mf=x(1), mw=x(2), Tw=x(3), qr=x(4), Rr=x(5)
F=[x(1)-x(2); % kg/s
x(4)-334000.*x(1)-4195.2.*x(3).*x(2)-4195.2.*ksmrw.*(x(3)-kTw1)-
1.4748.*x(3).^(4/3).*2.6852*2.5*0.15; % W 0.4
1.4748.*x(3).^(4/3).*2.6852*2.5*0.15+334000.*x(1)-1480.54.*((i
+1)^0.5-i^0.5).*2.6852*2.5*0.85*x(3); % 0.85 stand for the area,
which is not 2.6852*2.5*2.0