Page 366 - Defrosting for Air Source Heat Pump
P. 366

362                                                          Appendices

                      mf(j,i)=A(1); % melted water, kg/s; after this stage, mf
            is 0 kg/s
                      mrw(j,i)=A(2); % retained water, kg/s
                      Tw(j,i)=A(3); % retained water temperature, °C
                      qr(j,i)=A(4);%energyusedin defrosting fromrefrigerant.W
                      Tro(j,i)=A(5); % the temperature of tube surface at exit
            of each circuit, °C
                      A
                      x00=real(A);
                      fval
                      exit
                      qm(j,i)=334000.*mf(j,i); % W
                      sfrost(j,i)=5.*sum(mf(:,i)); % after this stage, sfrost
            (j,i)=0.350, kg
                      qair(j,i)=1.4748.*Tw(j,i).^(4/3).*2.6852*2.5*0.45*
            ((sfrost(j-1,i))./0.323).^1.5; % W
                      s_qair(j,i)=sum(qair(:,i))*5; % W
                                                              2
                      hair(j,i)=1.4748.*Tw(j,i).^(1/3); % W/(K m )
                      smvaw(j,i)=5.*sum(mvaw(:,i)); % kg
                                        2
                      hd(j,i)=0; % W/(K m )
                      qvap(j,i)=mvaw(j,i)*2443*1000; % W
                      s_qvap(j,i)=sum(qvap(:,i))*5; % W
                      watertray(j,i)=kmw3; % kg/s
                      swatertray(j,i)=sum(watertray(:,i)); % kg
                 hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
            1000*Tro(j,i)^3;
            % kJ/kg
                     qr2(j,i)=kMr*(khri-hro(j,i)); % W
                     s_qr2(j,i)=sum(qr2(:,i))*5; % W
            % here is the end of stage 3 for Circuit 3: frost melting with water
            flow to down circuit
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

              if sfrost(j,i)>=0.35;
                  sfrost(j,i)=0.35; % kg
                  mf(j,i)=0; % 4th stage the mf is always 0, kg/s
                  kTw1=Tw(j-1,i); % the initial values are different for each
            circuit, °C
                  mr0=0.008 ; % the water left on the first coil, kg/s
                  smvaw=smvaw(j-1,i); % at the beginning of this stage, it is 0, kg
                  % Coef7=-5800.2206;
                  % Coef8=1.3914993;
                  % Coef9=-0.04860239;
                  % Coef10=0.000041764768;
                  % Coef11=-0.000000014452093;
                  % Coef12=6.5459673;
                  Tair=0+273.15; % K; % Tair=0; % °C
   361   362   363   364   365   366   367   368   369   370   371