Page 367 - Defrosting for Air Source Heat Pump
P. 367

Appendices                                                        363

                    PwSat_Air=exp(-5800.2206*Tair.^(-1)+1.3914993*Tair.^(0)-
              0.04860239*Tair.^(1)+0.000041764768*Tair.^(2)-0.000000014452093
              *Tair.^(3)+6.5459673*log(Tair));% Pa
              dens_air=0.80*PwSat_Air/(8314/18*(273.15+0));% relative_Humi_air
              =0.80;
                    % 0.0039 density of component outside boundary layer, kg/m 3
                    % PwSat_pipeAir(1,t)=Pressure_Air_Water(Tr(1,t))
                    %      dens_pipe(c,t)=Pressure_Air_Water(Tw(c,t-1)).*10^6./
              (8314./18.*(273.15+Tw(c,t-1)))
                    % density of gas at interface (saturation density), kg/m 3
                    T=Tri(j,i)+273.15; % K
                    denspipe=exp(-5800.2206*T.^(-1)+1.3914993*T.^(0)-
              0.04860239*T.^(1)+0.000041764768*T.^(2)-0.000000014452093*T.^(3)
              +6.5459673*log(T))/(8314./18.*T); % calculate the density of humid-
              ity air, kg/m 3
                    kTri=Tri(j,i); % °C
                                     2
                    kRr=Rr(j,i); (K˙m )/W
                    kMr=Mr(j,i); % kg/s
                    khri=hri(j,i); % kJ/kg
                    % all the input parameters in the function listed here
                    x0=[0.0042 0.0042 0.335 1200 0.001];
                    options=optimset(’display’,’off’,’MaxIter’,10000,
              ’MaxFunEvals’,20000); % number
                    [A,fval,exit]=fsolve(@(x)    mystage43(x,kTw1,mr0,smvaw,i,
              denspipe,dens_air,kTri,kRr,kMr,khri),x0,options);
                    mrw(j,i)=A(1); % retained water, kg/s
                    mvaw(j,i)=A(2); % vaporized water, kg/s
                    Tw(j,i)=A(3); % retained water temperature, °C
                    qr(j,i)=A(4); % energy used in defrosting from refrigerant, W
                    Tro(j,i)=A(5); % the temperature of tube surface at exit of
              each circuit, °C

                    A
                    x00=real(A);
                    fval
                    exit
                                                             2
                    hair(j,i)=1.4748.*Tri(j,1).^(1/3); % W/(K m )
                    qair(j,i)=1.4748.*Tri(j,1).^(4/3).*2.6852*2.5*2; % W
                    s_qair(j,i)=sum(qair(:,i))*5; % W
                                                                      2
                    hd(j,i)=hair(j,i)/1005./1.258./0.845^(2/3); % W/(K m )
                    smvaw(j,i)=5.*sum(mvaw(:,i)); % kg
                    qm(j,i)=334000.*mf(j,i); % W
                    qvap(j,i)=mvaw(j,i)*2443*1000; % W
                    s_qvap(j,i)=sum(qvap(:,i))*5; % W
                    watertray(j,i)=0; % kg/s
                    swatertray(j,i)=sum(watertray(:,i)); % kg
   362   363   364   365   366   367   368   369   370   371   372