Page 363 - Defrosting for Air Source Heat Pump
P. 363

Appendices                                                        359

                    kmw1=mf(j-1,i-1)+0.0192; % the water comes from 1st circuit, kg/s
                    kmw2=kmw1+mf(j-1,i)+0.0192; % the water left from this 2nd
              circuit, kg/s
                    ksmrw=sfrost(17,i); % the sum of water retained on the
              coil, kg
                    kTw1=Tw(j-1,i); % °C
                    kTri=Tri(j,i); % °C
                                      2
                    kRr=Rr(j,i); % (K m )/W
                    kMr=Mr(j,i); % kg/s
                    khri=hri(j,i); % kJ/kg
                    % all the input parameters in the function listed here
                    x0=[0.0042 0.0042 0.335 1200 0.001]; % mf=x(1), mr=x(2),
              Tw=x(3); qr=x(4); Tro=x(5) the values of debugging;
                    options=optimset(’display’,’off’,’MaxIter’,100000,
              ’MaxFunEvals’,20000);% number
                    [A,fval,exit]=fsolve(@(x)mystage32(x,kmw1,kmw2,ksmrw,kTw1,
              i,kTri,kRr,kMr,khri),x0,options);
                    mf(j,i)=A(1); % melted water, kg/s; after this stage, mf is 0 kg/s
                    mrw(j,i)=A(2); % retained water, kg/s
                    Tw(j,i)=A(3); % retained water temperature, °C
                    qr(j,i)=A(4); % energy used in defrosting from refrigerant, W
                    Tro(j,i)=A(5); % the temperature of tube surface at exit of
              each circuit, °C
                    A
                    x00=real(A);
                    fval
                    exit
                    qm(j,i)=334000.*mf(j,i); % W
                    sfrost(j,i)=5.*sum(mf(:,i)); % after this stage, sfrost(j,i)
              =0.350, kg
                    qair(j,i)=1.4748.*Tw(j,i).^(4/3).*2.6852*2.5*0.50*((sfrost
              (j-1,i))./0.323).^1.5;
              %W
                    s_qair(j,i)=sum(qair(:,i))*5; % W
                                                             2
                    hair(j,i)=1.4748.*Tw(j,i).^(1/3); % W/(K˙m )
                    smvaw(j,i)=5.*sum(mvaw(:,i)); % kg
                                      2
                    hd(j,i)=0; % W/(K m )
                    qvap(j,i)=mvaw(j,i)*2443*1000; % W
                    s_qvap(j,i)=sum(qvap(:,i))*5; % W
                    watertray(j,i)=kmw2; % kg/s
                    swatertray(j,i)=sum(watertray(:,i)); % kg
                    hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
                                    2
              1000*Tro(j,i)^3; % W/(m °C)
                    qr2(j,i)=kMr*(khri-hro(j,i)); % W
                    s_qr2(j,i)=sum(qr2(:,i))*5; % W
              % here is the end of stage 3 for Circuit 2: frost melting with water
              flow to down circuit
              %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   358   359   360   361   362   363   364   365   366   367   368