Page 359 - Defrosting for Air Source Heat Pump
P. 359

Appendices                                                        355

              hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
              1000*Tro(j,i)^3;
                   qr2(j,i)=kMr*(khri-hro(j,i)); % W
                   s_qr2(j,i)=sum(qr2(:,i))*5; % W
              % here is the end of stage 1: preheating stage
              %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

                 else if j>=8
                      khri=hri(j,i); % kJ/kg
                      kMr=Mr(j,i); % kg/s
                      kTri=Tri(j,i); % °C
                                         2
                      kRr=Rr(j,i); % (K˙m )/W
                      ksmrw=sfrost(j-1,i); % the total retained water on 5*j
              seconds, kg
                      kTw1=Tw(j-1,i); % the temperature of the melted frost on
              5*j seconds, °C
                   % all the input parameters in the function listed here
                      x0=[0.0034 0.0034 0.35 1200 0.001]; % mf=x(1), mrw=x(2),
              Tw=x(3); qr=x(4); Tro=x(5) the values for debugging;
              options=optimset(’display’,’off’,’MaxIter’,100000,
              ’MaxFunEvals’,20000); % number
                      [A,fval,exit]=fsolve(@(x)mystage2(x,ksmrw,kTw1,i,kRr,
              kTri,khri,kMr),x0,options); % kRr1, kTr1 % uw(j,i)=A(1);
                      mf(j,i)=A(1); % the mass of melted frost, kg/s
                      mrw(j,i)=A(2); % the mass of retained water, kg/s
                      Tw(j,i)=A(3); % the temperature of retained water, °C
                      qr(j,i)=A(4); % the energy used in defrosting from refrig-
              erant, W
                      Tro(j,i)=A(5); % the temperature of tube surface at exit
              of each circuit, °C
                      A
                      x00=real(A);
                      fval
                      exit
                      qm(j,i)=334000.*mf(j,i); % W
                      effq(j,i)=qm(j,i)/qr(j,i); % 1
                      sfrost(j,i)=5.*sum(mf(:,i)); % kg
                      mvaw(j,i)=0; % kg/s
                      smvaw(j,i)=5.*sum(mvaw(:,i)); % kg
                                         2
                       hair(j,i)=0; % W/(m °C)
                      qair(j,i)=0; % W
                      s_qair(j,i)=sum(qair(:,i))*5; % W
                                       2
                       hd(j,i)=0; % W/(m °C)
                      qvap(j,i)=mvaw(j,i)*2443*1000; % W
                      s_qvap(j,i)=sum(qvap(:,i))*5; % W
                      watertray(j,i)=0; % kg/s
   354   355   356   357   358   359   360   361   362   363   364