Page 361 - Defrosting for Air Source Heat Pump
P. 361

Appendices                                                        357

                    exit
                    qm(j,i)=334000.*mf(j,i); % W
                    sfrost(j,i)=5.*sum(mf(:,i)); % after this stage, sfrost(j,i)
              =0.350 kg, obtained from the experimental study, kg
                    qair(j,i)=1.4748.*Tw(j,i).^(4/3).*2.6852*2.5*0.55*((sfrost
              (j-1,i))./0.323).^1.5; % W
                    s_qair(j,i)=sum(qair(:,i))*5; % W
                                                          2
                    hair(j,i)=1.4748.*Tw(j,i).^(1/3); % W/(m °C)
                    smvaw(j,i)=5.*sum(mvaw(:,i)); % kg/s
                                    2
                    hd(j,i)=0; % W/(m °C)
                    qvap(j,i)=mvaw(j,i)*2443*1000; % W
                    s_qvap(j,i)=sum(qvap(:,i))*5; % W
                    watertray(j,i)=kmw1; % kg/s
                    swatertray(j,i)=sum(watertray(:,i)); % kg
                    hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
              1000*Tro(j,i)^3; % kJ/kg
                    qr2(j,i)=kMr*(khri-hro(j,i)); % W
                    s_qr2(j,i)=sum(qr2(:,i))*5; % W

                if sfrost(j,i)>=0.35;
                 sfrost(j,i)=0.35; % after this stage, sfrost(j,i)=0.350 kg
                 mf(j,i)=0; % at the fourth stage, the mf is always 0 kg/s
                 kTw1=Tw(j-1,i); % the initial values are different for each
              circuit, °C
                 mr0=0.008; % the water left on the first coil; kg/s
                 smvaw=smvaw(j-1,i); % at the beginning of this stage, it is 0 kg
                 % Coef7=-5800.2206;
                 % Coef8=1.3914993;
                 % Coef9=-0.04860239;
                 % Coef10=0.000041764768;
                 % Coef11=-0.000000014452093;
                 % Coef12=6.5459673;
                 T=Tri(j,i)+273.15; % K
                 denspipe=exp(-5800.2206*T.^(-1)+1.3914993*T.^(0)-
              0.04860239*T.^(1)+0.000041764768*T.^(2)-0.000000014452093*T.^(3)
              +6.5459673*log(T))/(8314./18.*T); % calculate the density of
              humidity air
                 Tair=0+273.15;% K; % Tair=0 % °C
                 PwSat_Air=exp(-5800.2206*Tair.^(-1)+1.3914993*Tair.^(0)-
              0.04860239*Tair.^(1)+0.000041764768*Tair.^(2)-
              0.000000014452093*Tair.^(3)+6.5459673*log(Tair)); % Pa
                 dens_air=0.80*PwSat_Air/(8314/18*(273.15+0));
                 % relative_Humi_air=0.80
                 % 0.0039 density of component outside boundary layer, kg/m 3
                 % PwSat_pipeAir(1,t)=Pressure_Air_Water(Tr(1,t))
                 %  dens_pipe(c,t)=Pressure_Air_Water(Tw(c,t-1)).*10^6./(8314./
              18.*(273.15+Tw(c,t-1)));
   356   357   358   359   360   361   362   363   364   365   366