Page 361 - Defrosting for Air Source Heat Pump
P. 361
Appendices 357
exit
qm(j,i)=334000.*mf(j,i); % W
sfrost(j,i)=5.*sum(mf(:,i)); % after this stage, sfrost(j,i)
=0.350 kg, obtained from the experimental study, kg
qair(j,i)=1.4748.*Tw(j,i).^(4/3).*2.6852*2.5*0.55*((sfrost
(j-1,i))./0.323).^1.5; % W
s_qair(j,i)=sum(qair(:,i))*5; % W
2
hair(j,i)=1.4748.*Tw(j,i).^(1/3); % W/(m °C)
smvaw(j,i)=5.*sum(mvaw(:,i)); % kg/s
2
hd(j,i)=0; % W/(m °C)
qvap(j,i)=mvaw(j,i)*2443*1000; % W
s_qvap(j,i)=sum(qvap(:,i))*5; % W
watertray(j,i)=kmw1; % kg/s
swatertray(j,i)=sum(watertray(:,i)); % kg
hro(j,i)=44518+1170.36*Tro(j,i)+1.68674*Tro(j,i)^2+5.2703/
1000*Tro(j,i)^3; % kJ/kg
qr2(j,i)=kMr*(khri-hro(j,i)); % W
s_qr2(j,i)=sum(qr2(:,i))*5; % W
if sfrost(j,i)>=0.35;
sfrost(j,i)=0.35; % after this stage, sfrost(j,i)=0.350 kg
mf(j,i)=0; % at the fourth stage, the mf is always 0 kg/s
kTw1=Tw(j-1,i); % the initial values are different for each
circuit, °C
mr0=0.008; % the water left on the first coil; kg/s
smvaw=smvaw(j-1,i); % at the beginning of this stage, it is 0 kg
% Coef7=-5800.2206;
% Coef8=1.3914993;
% Coef9=-0.04860239;
% Coef10=0.000041764768;
% Coef11=-0.000000014452093;
% Coef12=6.5459673;
T=Tri(j,i)+273.15; % K
denspipe=exp(-5800.2206*T.^(-1)+1.3914993*T.^(0)-
0.04860239*T.^(1)+0.000041764768*T.^(2)-0.000000014452093*T.^(3)
+6.5459673*log(T))/(8314./18.*T); % calculate the density of
humidity air
Tair=0+273.15;% K; % Tair=0 % °C
PwSat_Air=exp(-5800.2206*Tair.^(-1)+1.3914993*Tair.^(0)-
0.04860239*Tair.^(1)+0.000041764768*Tair.^(2)-
0.000000014452093*Tair.^(3)+6.5459673*log(Tair)); % Pa
dens_air=0.80*PwSat_Air/(8314/18*(273.15+0));
% relative_Humi_air=0.80
% 0.0039 density of component outside boundary layer, kg/m 3
% PwSat_pipeAir(1,t)=Pressure_Air_Water(Tr(1,t))
% dens_pipe(c,t)=Pressure_Air_Water(Tw(c,t-1)).*10^6./(8314./
18.*(273.15+Tw(c,t-1)));