Page 395 - Design and Operation of Heat Exchangers and their Networks
P. 395

378   Design and operation of heat exchangers and their networks

                            N  0              M

                           X        0        X
                     0         0   Δτ s e 0                00
                 e                  qk              Δτ ql s e
                 θ q x , s ¼  g e     θ sðÞ +   g e    θ l x , s     (7.267)
                     q         qk      k         ql        l
                           k¼1               l¼1
                     N  0             M
                    X                X        00
                             00
             e 00       000  Δτ s e 0     00  Δτ s  00                00
                             lk θ sðÞ +
                                                θ q x , s
             θ sðÞ ¼   g e               g e  lq e       ð l ¼ 1, 2, …, N Þ
              l         lk      k         lq        q
                    k¼1               q¼1
                                                                     (7.268)

                                       2 e
                                      ∂ θ f , ij
                                                   e
                                                       e
                              e
                         sC f, ij θ f, ij ¼ K ij  2  + U f , ij θ ij  θ f, ij  (7.269)
                                       ∂y
                       y ¼ 0 : θ f , ij ¼ θ p, ij ;  y ¼ 1 : θ f, ij ¼ θ p,i +1, j  (7.270)
                                                        e
                                                  e
                                    e
                              e
             Although the excess temperature in the Laplace domain θ and θ p are the
                                                                   e
                                                             e
          functions of x, they can be treated as parameters in Eqs. (7.269), (7.270);
          therefore, they can be solved alone, which yields
                                                             !
                                   coshγ  1
                      U f , ij           ij
             e                  1+                             e
             θ f, ij ¼                       sinhγ y  coshγ y θ ij
                                                           ij
                                                  ij
                   sC f, ij + U f, ij  sinhγ
                                          ij
                                                                     (7.271)
                                             !
                       coshγ                         sinhγ y
                            ij                            ij
                                               e
                             sinhγ y  coshγ y θ p, ij +    e
                                                            θ p,i +1, j
                                  ij
                                           ij
                       sinhγ                         sinhγ
                            ij                            ij
          where
                                   q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                               γ ¼     sC f, ij + U f , ij =K ij     (7.272)
                                ij
             The integral and two derivatives of the fin temperature in the Laplace
          domain appearing in Eqs. (7.265), (7.266) are obtained as

                 ð         U f, ij 1 η
                  1                         η
                                    f, ij    f, ij
                   e                    θ ij +   e     e             (7.273)
                   θ f, ij dy ¼                  θ p, ij + θ p,i +1, j
                                        e
                  0         sC f, ij + U f, ij  2

               ∂θ e     1         1                                i
                                              h
                            η θ
                f , ij
                              e
                                                      θ p, ij  μ θ p,i +1, j
             K ij     ¼ U f , ij ij ij    sC f , ij  + U f , ij  η + μ ij  e  ij  e  (7.274)
                                                 ij
                ∂y      2         2
                   y¼0

                   ∂θ           1
                    e
                                             θ
                                       η
                     f ,i 1, j
                                             e
               K i 1, j      ¼  U  f ,i 1, j f ,i 1, j i 1, j
                      ∂y        2
                          y¼1
                1                h                               i
                                        θ
                                        e
                  sC f ,i 1, j  + U f ,i 1, j  μ f ,i 1, j p,i 1, j   η f ,i 1, j  + μ f ,i 1, j  θ p, ij  (7.275)
                                                              e
                2
   390   391   392   393   394   395   396   397   398   399   400