Page 399 - Design and Operation of Heat Exchangers and their Networks
P. 399
382 Design and operation of heat exchangers and their networks
The linearization and Laplace transform of the governing equation sys-
tem yield
0 1
^ ψ
e
dθ ij
e
e
e
e
sC ij θ ij + _ C ij ¼ ψ θ p, ij + θ p,i +1, j 2θ ij + @ e ψ ij e A ^ t p, ij +^ t p,i +1, j 2^ t ij
_ C ij
ij
ij
dx ^ _
C ij
(7.296)
θ
sC p, ij p, ij ¼ ψ θ ij θ p, ij + ψ i 1, j e e ij e e
e
e
∗ e
θ i 1, j θ p, ij + ϕ θ p,i +1, j θ p, ij
ij
+ ϕ i 1, j θ p,i 1, j θ p, ij + e ψ ^ t ij ^ t p, ij + e ψ i 1, j ^ t i 1, j ^ t p, ij
e
e
ij
+ ϕ ^ t p,i +1, j ^ t p, ij + ϕ i 1, j ^ t p,i 1, j ^ t p, ij
e
e
ij
(7.297)
where
1
e ψ ¼ U p, ij + U f, ij η ij (7.298)
e
e
ij
2
1
ψ ¼ U p, ij + U f, ij η ij (7.299)
ij
2
1
ϕ ¼ e U f, ij μ (7.300)
e
ij ij
2
1
ϕ ¼ U f, ij μ (7.301)
ij
2 ij
Eq. (7.297) can be expressed in the matrix form as
e ^
e ^
e ^
e ^
QΘ p ¼ CΘ QT p CT ¼ CΘ QP C T (7.302)
e
e
e
which yields the excess plate temperature vector in the Laplace domain as
e ^
Θ p ¼ PΘ + PT (7.303)
e
e
where The M p M coefficient matrices P and P are calculated from
e
1
P ¼ Q C (7.304)
e ^
1
P ¼ Q C QP (7.305)
e
e
in which the nonzero elements of Q, Q, C,and C for different block arrange-
e
e
^
mentsaregiveninTable7.3,andPiscalculatedfromEq.(7.245)andTable7.1.
By eliminating the plate temperatures with Eqs. (7.303), (7.244),
Eq. (7.296) can be expressed in the matrix form as
dΘ
e
^
¼ AΘ + BT (7.306)
e
dx