Page 396 - Design and Operation of Heat Exchangers and their Networks
P. 396

Dynamic analysis of heat exchangers and their networks  379


                 Now, we can substitute Eqs. (7.274), (7.275) into Eq. (7.266) to get the
              relationship between the fluid temperature and the plate temperature;

                  sC p, ij + ψ + ϕ + ψ i 1, j  + ϕ i 1, j  θ p, ij  ϕ θ p,i +1, j  ϕ i 1, j p,i 1, j
                                                                     θ
                                               e
                                                       e
                                                                     e
                               ij
                           ij
                                                       ij
                  ¼ ψ θ ij + ψ ∗ i 1, j i 1, j
                                θ
                      ∗e
                                e
                      ij
                                                                        (7.276)
              where
                                          1  h                    i
                 heat transfer parameter ψ ¼  U p, ij + sC f, ij + U f, ij η ,
                                                                 ij
                                       ij
                                          2                             (7.277)
                                       ∗  1
                                      ψ ¼    U p, ij + U f, ij η
                                       ij               ij
                                          2
                                                  1
                   bypass heat transfer parameter ϕ ¼  sC f , ij + U f, ij μ ij  (7.278)
                                               ij
                                                  2

                                                 tanh γ =2
                                                       ij
                                fin efficiency η ¼                      (7.279)
                                             ij
                                                    γ =2
                                                     ij
                                                         2
                              fin bypass efficiency μ ¼                 (7.280)
                                                 i, j
                                                     γ sinhγ
                                                      i, j  i, j
                 The matrix form of Eq. (7.276) can be expressed as
                                         QΘ p ¼ CΘ                      (7.281)
                                           e
                                                 e
                 The excess plate temperature vector in the Laplace domain is presented
              explicitly as
                                     Θ p ¼ Q CΘ ¼ PΘ                    (7.282)
                                     e
                                             1 e
                                                     e
                 The nonzero elements of the M p  M p matrix Q and M p  M matrix C
              for different block arrangements are given in Table 7.2.
                 Substitution of Eqs. (7.282), (7.273) into Eq. (7.265) yields
                                          dΘ
                                           e
                                             ¼ AΘ                       (7.283)
                                                 e
                                          dx
              where the elements of A are given as follows:
                       ∗
                       ij
                      ψ
              a ijðÞ,q ¼  p ijðÞ,q + p i +1, jð  Þ,q
                      _
                     C ij


                       δ ijðÞ,q     sC f, ij U f, ij        ∗
                             sC ij +           1 η f , ij  +2ψ ij  ð q ¼ 1, 2, …, MÞ
                         _         sC f , ij + U f, ij
                        C ij
                                                                        (7.284)
   391   392   393   394   395   396   397   398   399   400   401