Page 397 - Design and Operation of Heat Exchangers and their Networks
P. 397

380   Design and operation of heat exchangers and their networks


          Table 7.2 Nonzero elements of Q and C in Eq. (7.281) for different block arrangements.
          Block arrangement            Nonzero elements
                                       q ijðÞ, ijðÞ ¼ sC p, ij + ψ + ψ  + ϕ + ϕ
          1<i n j                                      ij  i 1, j  ij  i 1, j
                                              Þ ¼ ϕ             Þ ¼ ϕ
                                       q ijðÞ, i 1, jð  i 1, j , q ijðÞ, i +1, jð  ij
                                                ∗            ∗
                                                ij
                                       c ijðÞ, ijðÞ ¼ ψ , c ijðÞ, i 1, jð  Þ ¼ ψ  i 1, j
          i¼1       Sequential         q 1, jð  Þ,1, jÞ ¼ sC p,1, j + ψ  1, j  + ψ  n j , j  + ϕ 1, j  + ϕ n j , j
                                           ð
                                       q        ¼ ϕ n j , j  , q 1, jð  Þ,2, jÞ ¼ ϕ 1, j
                                           ð
                                        ð 1, jÞ, n j, jÞ    ð
                                                  ∗
                                          Þ,1, jÞ ¼ ψ , c    ¼ ψ ∗
                                       c 1, jð  ð  1, j  ð 1, jÞ, n j, jÞ  n j , j
                                                         ð
                                                 1
                    Symmetry I and II  q 1, jð  Þ,1, jÞ ¼ sC p,1, j + ψ 1, j  + ϕ 1, j
                                           ð
                                                 2
                                          Þ,2, jÞ ¼ ϕ , c 1, jÞ,1, jÞ ¼ ψ ∗
                                       q 1, jð  ð   1, j  ð  ð   1, j
                    Symmetry III       q (1,j), (1,j) ¼1, q (1,j), (2,j) ¼ 1
                    Sequential         q (n j +1,j), (nj+1,j) ¼1, q (n j +1,j), (1,j) ¼ 1
                                                      1
          i¼n j +1  Symmetry I         q             ¼ sC p, n j , j + ψ n j , j  + ϕ n j , j
                                              ð
                                        ð n j +1, jÞ, n j +1, jÞ  2
                                       q           ¼ ϕ   , c          ¼ ψ ∗
                                                                 ð
                                              ð
                                        ð n j +1, jÞ, n j, jÞ  n j , j ð n j +1, jÞ, n j, jÞ  n j , j
                    Symmetry II and III  q (n j +1,j), (nj+1,j) ¼1, q (n j +1,j), (nj,j) ¼ 1
                                                 1
          n j ¼1                       q 1, jð  Þ,1, jÞ ¼ sC p,1, j + ψ , c 1, jÞ,1, jÞ ¼ ψ ∗ 1, j
                                                          1, j
                                                              ð
                                                                 ð
                                                 2
                                           ð
             The boundary conditions (7.267) and (7.268) can be expressed in the
          matrix form as
                                           0
                                    0   e 0 e  e e  00
                                Θ xðÞ ¼ G Θ + GΘ xðÞ                 (7.285)
                                e
                                       000    00
                                  00      0
                                                   00
                                Θ ¼ G Θ + G Θ xðÞ                    (7.286)
                                 e
                                      e e
                                             e e
                      0  00       000
          where G, G , G , and G    are the matching matrices with time delay,
                                e
                 e e
                        e
                                                                    000  Δτ s
                                                       00  Δτ s
                                               0  Δτ s
          whose elements are given by g e  Δτ ij s , g e  0 ik , g e  00 li , and g e  000 lk ,
                                      ij       ik      li           lk
          respectively.
             With the similar method aforementioned, the solution in the Laplace
          domain can be expressed as
                                                    1  0  0
                                          0
                                             e
                            Θ xðÞ ¼ V xðÞ V  GV 00   G Θ             (7.287)
                            e
                                                     e e

                                                      1
                          00     000  00                0   0
                                            0
                         Θ ¼ G + G V    00  V  GV 00   G Θ           (7.288)
                                                       e
                                    e
                               e
                                               e
                         e
                                                           e
                                        h     i               h      i
                                            r q x 0                r q x 00
                                                           00
          with V xðÞ ¼ h pq e r q x p  , V ¼ h pq e  p  , and V ¼ h pq e  p  ,
                                     0
                             M M
                                               M M                    M M
          where r q (q¼1, 2, …, M) and h pq (p, q¼1, 2, …, M) are the eigenvalues
   392   393   394   395   396   397   398   399   400   401   402