Page 398 - Design and Operation of Heat Exchangers and their Networks
P. 398

Dynamic analysis of heat exchangers and their networks  381


              and eigenvectors of A in Eq. (7.283). The excess plate temperature
              distribution in the Laplace domain can be obtained from Eq. (7.282).
                 This equation gives the general analytical form of the exit temperature
              responses of the streams to the inlet temperature disturbances in the Laplace
              domain.


              7.4.5 Dynamic response based on Pingaud’s model

              Pingaud et al. (1989) first studied the dynamic behavior of plate-fin heat
              exchangers with a numerical method. In their mathematical model, they
              assumedthatthefindynamicscouldbeneglected,andthesteady-statefineffi-
              ciency and bypass efficiency were used to take the heat conduction in the fins
              into account. This assumption can simplify the analysis of the dynamic
              responses to flow disturbances. We can add the thermal capacity of the fins
              into that of the separating plates to take the effect of the fin dynamics into
              account. Based on the Pingaud’s assumption, the governing equations are
              expressed for section q (q¼1, 2, …, M p ; i¼1, 2, …, n; j¼1, 2, …, m)as

                               ∂t ij  _  ∂t ij
                            C ij  + C ij  ¼ ψ t p, ij + t p,i +1, j  2t ij  (7.289)
                                             ij
                               ∂τ      ∂x


                 C ∗  ∂t p, ij  ¼ ψ t ij  t p, ij + ψ
                                                             ij
                   p, ij     ij           i 1, j  t i 1, j  t p, ij + ϕ t p,i +1, j  t p, ij
                      ∂τ
                          + ϕ i 1, j    t p,i 1, j  t p, ij
                                                                        (7.290)
              in which
                                        1
                                   ψ ¼    U p, ij + U f , ij η f, ij    (7.291)
                                    ij
                                        2
                                            1
                                       ϕ ¼ U f, ij μ f, ij              (7.292)
                                         ij
                                            2
                                               q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                             1
                                        tanh     U f, ij =K ij
                                             2
                                  η  ¼                                  (7.293)
                                   f, ij   1  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                               U f, ij =K ij
                                           2
                                                2
                                 ij
                                μ ¼ q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  (7.294)
                                       U f , ij =K ij sinh  U f, ij =K ij
              and the appropriate new effective plate heat capacity reads

                                C ∗ p, ij  ¼ C p, ij +  1   C f, ij + C f ,i 1, j     (7.295)
                                            2
   393   394   395   396   397   398   399   400   401   402   403