Page 430 - Design and Operation of Heat Exchangers and their Networks
P. 430

Experimental methods for thermal performance of heat exchangers  413


                                          1 dθ    0   dθ w
                                                       e
                                             e
                                                 e
                               x ¼ 0 : θ       ¼ θ sðÞ,   ¼ 0            (8.93)
                                      e
                                          Pedx        dx
                                            dθ   dθ w
                                                  e
                                             e
                                    x ¼ 1 :    ¼    ¼ 0                  (8.94)
                                            dx   dx
                 Substitution of Eq. (8.91) into Eq. (8.92) yields

                  d θ    d θ                   s + NTU d θ      s + NTUdθ
                          3 e
                                                                         e
                                                         2 e
                   4 e
                      Pe       Pe sB + NTUÞ +               +Pe
                                  ð
                  dx 4   dx 3                    K w    dx 2      K w   dx
                       Pe    2
                     +     s B + sBNTU + sNTU θ ¼ 0                      (8.95)
                                                e
                       K w
              This is an ordinary differential equation of fourth order whose eigenfunction is

                                               s + NTU        s + NTU
                      4     3                            2
                     r  Per   Pe sB + NTUð  Þ +         r +Pe         r
                                                 K w             K w
                               Pe    2
                             +     s B + sBNTU + sNTU ¼ 0                (8.96)
                               K w
              The four complex roots of Eq. (8.96), r i (i¼1, 2, 3, 4), can be found ana-
              lytically and explicitly (Anon., 1979). Thus, we obtain the solution in the
              Laplace domain as
                                             4
                                            X    r i x
                                         e
                                         θ ¼    c i e                    (8.97)
                                             i¼1
                                 4                        2
                                X    1                   r i   r i x
                           θ w ¼          sB + NTU + r i     c i e       (8.98)
                           e
                                    NTU                  Pe
                                 i¼1
                 The coefficients c i in Eqs. (8.97), (8.98) are determined with the bound-
              ary conditions. Substituting Eqs. (8.97), (8.98) into Eqs. (8.93), (8.94),we
              have
                                       4
                                      X
                                              r i     0
                                                    e
                                          1      c i ¼ θ                 (8.99)
                                              Pe
                                      i¼1
                                4                     3
                               X                     r
                                                  2   i
                                   ð sB + NTUÞr i + r    c i ¼ 0        (8.100)
                                                  i  Pe
                               i¼1
   425   426   427   428   429   430   431   432   433   434   435