Page 433 - Design and Operation of Heat Exchangers and their Networks
P. 433

416   Design and operation of heat exchangers and their networks


             The singularities given by Eq. (8.114) are of the first order. The formula
          for their residua are
                              h       i
                                     s j τ              sτ
                            res θ f s j e  ¼ lim s s j θ f sðÞe      (8.116)
                               e
                                                   e
                                          s!s j
          Therefore, we have
                                     h        i
                                            s 0 τ
                                      e  ðÞe   ¼ 1                   (8.117)
                                   res θ f s 0
                                     h                     i
                                  2β β cos β x + asin β x
                h        i          j  j     j          j
                       s j τ                                       ax + s j τ
              res θ f s j e  ¼            h                       ie
                 e
                                    2
                                2
                                                    2
                            s j a + β +2a  B + NTU = s j + NTU  2
                                    j
                                                                     (8.118)
             Substituting Eqs. (8.117), (8.118) into Eq. (8.112), we obtain the real-
          time solution:
                            h                   i
                       ∞
                      X2β β cos β x + asin β x
                              j
                                    j
                                              j
                           j
             θ xτðÞ ¼ 1+             2            e ax
                                  2
                                 a + β +2a
                       j¼1           j
                     8                                                   9
                     <            s j τ                     s  j τ       =
                                 e                         e
                        h                     i +  h                     i
                     :          2           2              2           2 ;
                       s j B + NTU = s j + NTU  s  j B + NTU = s  j + NTU
                                                                     (8.119)
             If thethermal capacity of thefluid in the testcoreis negligiblecompared
          with the thermal capacity of the solid wall, that is, B¼0, Eq. (8.114) reduces to

                                      2
                               NTU a + β   2
                                           j
                         s j ¼      2         ð j ¼ 1, 2, …, ∞Þ      (8.120)
                               2
                              a + β +2aNTU
                                    j
          The real-time temperature response becomes
           θ B¼0 x, τÞ
               ð
                                  h                    i            2  2
                                                                    j ð
                     ∞    8NTUa β β cos β x + asin β x         NTU β + a Þ
                                2
                    X             j  j    j         j       ax  β + a +2aNTU τ
                                                               2
                                                                  2
               ¼ 1                                         e   j
                         2
                                             2
                                 2
                                     2
                                                2
                    j¼1 β + a 2  β + a +2a  β + a +2aNTU
                                             j
                                 j
                         j
                                                                     (8.121)
             The real-time solutions (8.119) and (8.121) converge well for Pe<20.
          However, if Pe>50, they might not converge; therefore, a numerical
          inverse algorithm is demanded.
   428   429   430   431   432   433   434   435   436   437   438