Page 432 - Design and Operation of Heat Exchangers and their Networks
P. 432

Experimental methods for thermal performance of heat exchangers  415


              The Laplace transform of the fluid temperature can be easily obtained as:

                               asinh b 1 xފ + bcosh b 1 xފ   0
                                                     ð
                                                    ½
                                    ½
                                      ð
                            e
                            θ ¼    2   2                    e θ         (8.109)
                                                             ax e
                                  a + b
                                        sinh bðÞ + bcosh bðÞ
                                    2a
              where
                                              Pe
                                           a ¼                          (8.110)
                                               2
                                     r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                            2aNTUs
                                        2
                                  b ¼  a +          +2aBs               (8.111)
                                            s + NTU
              The inverse Laplace transform can be obtained by the use of the residuum
              theorem (Anon., 1979):
                                       σ + i∞
                                     1          sτ   X           s j τ
                            h   i       ð             ∞    h      i
                  θ τðÞ ¼ L  1 e           θ sðÞe ds ¼  res fs j e      (8.112)
                                           e
                                                            e
                             θ sðÞ ¼
                                    2πi
                                       σ i∞          j¼0
              to obtain the analytical expression of the real-time temperature dynamics.
              For a unit step change in inlet fluid temperature, the integrand becomes
                            1 asinh b 1 xފ + bcosh b 1 xފ  ax sτ
                                     ð
                                                   ½
                                   ½
                                                    ð
                                                           e e          (8.113)
                                  2
                             s   a + b 2
                                       sinh bðÞ + bcosh bðÞ
                                   2a
              One of the singularities is s 0 ¼0, which is of the first order. Other singular-
                                                   2
              ities are zero points of the denominator  a + b 2  sinh bðÞ + bcosh bðÞ, which
                                                    2a
              yield
                      "             2  2 #
                    1              a + β j
              s  j ¼   NTU 1 + BÞ +
                           ð
                    2B               2a
                      v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                      u                     2  2            2   2  ! 2
                      u                    a + β           a + β
                    1 t     2                  j                j
                        NTU 1+2Bð  Þ + 2NTU      + NTUB             ð  j ¼ 12…;∞Þ
                    2B                       2a              2a
                                                                         (8.114)
              in which β j is the jth root of the function
                                                2aβ
                                                   j
                                       tanβ ¼   2                       (8.115)
                                           j
                                              β  a  2
                                                j
   427   428   429   430   431   432   433   434   435   436   437