Page 488 - Design and Operation of Heat Exchangers and their Networks
P. 488

Appendix  471


              x_in =  [0,  x1, x1, x2, x1, x2, L];
              x_out = [x1, x2, x2, L,  0, x1, x2];
              A_H1C1 = 2.3; % m2
              A_H1C2 = 2.2; % m2
              G = zeros(7, 7);
              G1 = zeros(7, 3);
              G2 = zeros(3, 7);
              G(2, 1) = 1;
              G(4, 3) = 1;
              G(5, 6) = 1;
              G(6, 7) = 1;
              G1(1, 3) = 1;
              G1(3, 2) = 1;
              G1(7, 1) = 1;
              G2(1, 5) = 1;
              G2(2, 4) = 1;
              G2(3, 2) = 1;
              A = zeros(7, 7);
              A(1, 5) = k ∗ A_H1C2 / C_C2 / L; % 1/m
              A(1, 1) = - A(1, 5);
              A(2, 6) = A(1, 5);
              A(2, 2) = - A(2, 6);
              A(3, 6) = k ∗ A_H1C1 / C_C1 / L; % 1/m
              A(3, 3) = - A(3, 6);
              A(4, 7) = A(3, 6);
              A(4, 4) = - A(4, 7);
              A(5, 1) = k ∗ A_H1C2 / C_H1 / L;
              A(5, 5) = - A(5, 1);
              A(6, 2) = A(5, 1);
              A(6, 3) = k ∗ A_H1C1 / C_H1 / L;
              A(6, 6) = - A(6, 2) - A(6, 3);
              A(7, 4) = A(6, 3);
              A(7, 7) = - A(7, 4);
              V_in = zeros(7, 7);
              V_out = zeros(7, 7);
              [A_V, A_D] = eig(A);
              for i=1:7
                   for j =1:7
                        V_in(i, j) = A_V(i, j) ∗ exp(A_D(j, j) ∗ x_in(i));
                        V_out(i, j) = A_V(i, j) ∗ exp(A_D(j, j) ∗ x_out(i));
   483   484   485   486   487   488   489   490   491   492   493