Page 486 - Design and Operation of Heat Exchangers and their Networks
P. 486

Appendix  469


              % logarithmic mean temperature difference, K
              G_h = Q ∗ 1000 / (cp_h ∗ (t_h_in - t_h_out)) / (N_tube ∗ pi ∗ d_i  ^  2 / 4);
              % tubeside mass velocity, kg/m2s
              Re_h = G_h ∗ d_i / mu_h; % tubeside Reynolds number
              f8 = (1.82 ∗ log10(Re_h) - 1.64)  ^  (-2) / 8;
              t_c_m = (t_c_in + t_c_out) / 2;

              L = 2.701; % assumed tube length, m
              Pr_w = Pr_h; % assumed Prandtl number at the tubeside wall
              for iter = 1 : 1000
                   n = ceil(L / delta_L); % number of axially mixed zones
                   Pe_c = 2 ∗ n; % shellside dispersive Peclet number
                   delta_t_m_d = ((t_h_in - t_c_out) - (t_h_out - t_c_in)) ...
                       / log((t_h_in - t_c_out) / (t_h_out - t_c_in)) ...
                       - (t_h_in - t_h_out) / Pe_h - (t_c_out - t_c_in) / Pe_c;
                   % mean temperature difference for dispersive flow, K
                   kA = Q ∗ 1000 / delta_t_m_d;
                   % overall heat transfer coefficient based on tubeside area, W/m2K
                   Nu_h = f8 ∗ (Re_h - 1000) ∗ Pr_h / (1 + 12.7 ∗ sqrt(f8) ∗ (Pr_h ...
                      ^                          ^                      ^
                        (2/3) - 1)) ∗ (1 + (d_i / L)  (2 / 3)) ∗ (Pr_h / Pr_w)  0.11;
                   alpha_h = Nu_h ∗ lambda_h / d_i;
                   % tubeside heat transfer coefficient, W/m2K
                   s = kA / (N_tube ∗ pi ∗ d_i) ∗ (1 / alpha_h + R_w_i + d_i ...
                       / (alpha_c ∗ d_o)) - L;
                   L=L+s;% calculated tube length, m
                   k_i = kA / (N_tube ∗ pi ∗ d_i ∗ L);
                   % overall heat transfer coefficient based on tubeside area, W/m2K
                   C = 1 - ((t_h_in - t_h_out) / Pe_h + (t_c_out - t_c_in) / Pe_c) / delta_t_LM;
                   t_h_w_m = t_h_m - C ∗ k_i ∗ (t_h_m - t_c_m) / alpha_h;
                   % mean wall temperature at hot water side (tubeside), °C
                   [cp_w, lambda_w, mu_w] = water_properties(t_h_w_m);
                   % viscosity at the tubeside wall, sPa
                   Pr_w = mu_w ∗ cp_w / lambda_w; % Prandtl number at the tubeside wall
                   if (abs(s) < 1E-6)
                        break;
                   end
              end
              fprintf('L = %fm\n', L);
   481   482   483   484   485   486   487   488   489   490   491