Page 80 - Design and Operation of Heat Exchangers and their Networks
P. 80
Basic thermal design theory for heat exchangers 67
Gnielinski, V., 1995. Ein neues Berechnungsverfahren f€ur die W€arme€ubertragung im
€ Ubergangsbereich zwischen laminarer und turbulenter Rohrstr€omung. Forsch. Inge-
nieurwes. 61 (9), 240–248.
Gnielinski, V., 2010a. G1 Heat transfer in pipe flow. In: 5825 Atlas, second ed. Springer,
D€usseldorf.
Gnielinski, V., 2010b. G2 Heat transfer in concentric annular and parallel plate ducts. In: VDI
Heat Atlas, second ed. Springer, D€usseldorf.
Gnielinski, V., 2013a. G1 Durchstr€omte Rohre. In: VDI W€armeatlas, eleventh ed. Springer,
D€usseldorf.
Gnielinski, V., 2013b. G2 W€arme€ubertragung im konzentrischen Ringspalt und im ebenen
Spalt. In: VDI W€armeatlas, eleventh ed. Springer, D€usseldorf.
Grigull, U., Tratz, H., 1965. Thermischer einlauf in ausgebildeter laminarer rohrstr€omung.
Int. J. Heat Mass Transf. 8 (5), 669–678.
Hewitt, G.F., Hall-Taylor, N.S., 1970. Annular Two-Phase Flow. Pergamon Press, Oxford.
Huber, M.L., Perkins, R.A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N.,
Miyagawa, K., Hellmann, R., Vogel, E., 2012. New international formulation for the
thermal conductivity of H2O. J. Phys. Chem. Ref. Data 41 (3), 033102.
Ichikawa, S., Kishima, A., 1972. Applications of Fourier series technique to inverse Laplace
transform. Kyoto University Memories 34 (part 1), 53–67.
Kast, W., 2010. L1.2 Pressure drop in flow through pipes. In: VDI Heat Atlas, second ed.
Springer, D€usseldorf.
Kast, W., 2013. L1.2 Druckverlust in durchstr€omten Rohren. In: VDI W€armeatlas, eleventh
ed. Springer, D€usseldorf.
Kraus, A.D., Aziz, A., Welty, J., 2001. Extended Surface Heat Transfer. John Wiley & Sons,
New York.
Lee, D.-Y., 1994. Thermisches Verfahren von Rohrb€undelw€arme€ubertragern. Fortschritt-
Berichte VDI, Reihe 19, Nr. 78, VDI Verlag, D€usseldorf.
Lockhart, R.W., Martinelli, R.C., 1949. Proposed correlation of data for isothermal two-
phase two-component flow in a pipe. Chem. Eng. Prog. 45 (1), 39–48.
Lundberg, R.E., McCuen, P.A., Reynolds, W.C., 1963. Heat transfer in annular passages.
Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures
or heat fluxes. Int. J. Heat Mass Transf. 6 (6), 495–529.
Luo, X., 1998. Das axiale Dispersionsmodell f€ur Kreuzstromw€arme€ubertrager. Dissertation,
University of the Federal Armed Forces Hamburg, Germany. Also in: Fortschritt-
Berichte VDI, Reihe 19, Nr. 109, VDI Verlag, D€usseldorf.
Luo, X., Roetzel, W., 1995. Extended axial dispersion model for transient analysis of heat
exchangers. In: Proceedings of the 4th UK National Conference on Heat Transfer,
26-27 September 1995. IMechE, London, pp. 411–416.
Mecklenburgh, J.C., Hartland, S., 1975. The Theory of Backmixing: The Design of Con-
tinuous Flow Chemical Plant With Backmixing Cover. John Wiley and Sons.
Na Ranong, C., Roetzel, W., 2012. Unity Mach number axial dispersion model for heat
exchanger design. J. Phys. Conf. Ser. 395, 012052.
Naphon, P., Wongwises, S., 2006. A review of flow and heat transfer characteristics in curved
tubes. Renew. Sust. Energ. Rev. 10 (5), 463–490.
Pa ´tek, J., Hruby, J., Klomfar, J., Sou ckova ´, M., 2009. Reference correlations for thermophy-
´
sical properties of liquid water at 0.1MPa. J. Phys. Chem. Ref. Data 38 (1), 21–29.
Popiel, C.O., Wojtkowiak, J., 1998. Simple formulas for thermophysical properties of liquid
water for heat transfer calculations (from 0°C to 150°C). Chem. Ing. Tech. 19 (3),
87–101.
Roetzel, W., 1969. Ber€ucksichtigung ver€anderlicher W€arme€ubergangskoeffizienten und
W€armekapazit€aten bei der Bemessung von W€armeaustauschern. W€arme
Stoff€ubertragung 2, 163–170.