Page 81 - Design and Operation of Heat Exchangers and their Networks
P. 81

68    Design and operation of heat exchangers and their networks


          Roetzel, W., 1988. Analytische Berechnung von W€arme€ubertragern mit nachtr€aglicher
             Ber€ucksichtigung temperaturabh€angiger W€armekapazit€aten. W€arme Stoff€ubertragung
             23, 175–177.
          Roetzel, W., 1996. Transient analysis in heat exchangers. In: Afgan, N. et al., (Eds.), New
             Developments in Heat Exchangers, Gordon and Breach Publishers, Amsterdam,
             pp. 547–575.
          Roetzel, W., 2010. New axial dispersion model for heat exchanger design. In: Stachel, A.A.,
             Mikielewicz, D. (Eds.), Proceedings of the 13th International Symposium on Heat
             Transfer and Renewable Sources of Energy. Wydawnistwo Uczelnianie ZUT w Szcze-
             cinie, pp. 567–568.
          Roetzel, W., Das, S.K., 1995. Hyperbolic axial dispersion model: concept and its application
             to a plate heat exchanger. Int. J. Heat Mass Transf. 38 (16), 3065–3076.
          Roetzel, W., Luo, X., 2011. Mean overall heat transfer coefficient in heat exchangers allow-
             ing for temperature-dependent fluid properties. Heat Transfer Eng. 32 (2), 141–150.
          Roetzel, W., Na Ranong, C., 1999. Consideration of maldistribution in heat exchangers
             using the hyperbolic dispersion model. Chem. Eng. Process. 38, 675–681, Also in: Pro-
             gress in Engineering Heat Transfer, B. Grochal, J. Mikielewicz and B. Sunden (eds.),
             Institute of Fluid-Flow Machinery Publishers, 569–580.
          Roetzel, W., Na Ranong, C., 2014. Evaluation of residence time measurements on heat
             exchangers for the determination of dispersive Peclet numbers. Arch. Thermodyn.
             35 (2), 103–115.
          Roetzel, W., Na Ranong, C., 2015. Evaluation method of single blow experiment for the
             determination of heat transfer coefficient and dispersive Peclet number. Arch. Thermo-
             dyn. 36 (4), 3–24.
          Roetzel, W., Na Ranong, C., 2018a. Evaluation of temperature oscillation experiment for
             the determination of heat transfer coefficient and dispersive Peclet number. Arch. Ther-
             modyn. 39 (1), 91–110.
          Roetzel, W., Na Ranong, C., 2018b. Thermal calculation of heat exchangers with simplified
             consideration of axial wall heat conduction. In: Proceedings of the 17th International
             Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018), E3S
             Web of Conferences. vol. 70. (02013).
          Roetzel, W., Spang, B., 2010. C1 Thermal design of heat exchangers. In: VDI Heat Atlas,
             second ed. Springer, D€usseldorf.
          Roetzel, W., Spang, B., 2013. C1 Berechnung von W€arme€ubertragern. In: VDI W€armeatlas,
             eleventh ed. Springer, D€usseldorf.
          Roetzel,  W.,  Spang,  B.,  2019.  W€arme€ubertrager:  W€armedurchgang  und
             W€armedurchgangskoeffizienten. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D.,
             Schaber, K., Wetzel, T. (Eds.), VDI W€armeatlas, twelfth ed. Springer, Berlin,
             D€usseldorf.
          Roetzel, W., Spang, B., Luo, X., Das, S.K., 1998. Propagation of the third sound wave in
             fluid: hypothesis and theoretical foundation. Int. J. Heat Mass Transf. 41, 2769–2780.
          Roetzel, W., Na Ranong, C., Fieg, G., 2011. New axial dispersion model for heat exchanger
             design. Heat Mass Transf. 47, 1009–1017.
          Sahoo, R.K., Roetzel, W., 2002. Hyperbolic axial dispersion model for heat exchangers. Int.
             J. Heat Mass Transf. 45 (6), 1261–1270.
          Schmidt, E.F., 1967. W€arme€ubergang und Druckverlust in Rohrschlangen. Chem. Ing.
             Tech. 39 (13), 781–789.
          Shah, R.K., London, A.L., 1978. Laminar Flow Forced Convection in Ducts. Academic
             Press, New York.
          Sieder, E.N., Tate, G.E., 1936. Heat transfer and pressure drop of liquids in tubes. Ind. Eng.
             Chem. 28 (12), 1429–1435.
   76   77   78   79   80   81   82   83   84   85   86