Page 79 - Design and Operation of Heat Exchangers and their Networks
P. 79
66 Design and operation of heat exchangers and their networks
However, the Laplace transform can only be used for linear problems.
For nonlinear problems with small disturbances, we should first linearize
the problem and then solve it with Laplace transform. If the linearization
is no longer allowed, a numerical method has to be used to calculate the tem-
perature dynamics.
References
Ali, S., 2001. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dyn.
Res. 28 (4), 295–310.
Anon., 1979. Handbook of Mathematics. People’s Education Publishing House (in Chinese).
Baehr, H.D., 1960. Gleichungen f€ur den W€arme€ubergang bei hydrodynamisch nicht ausge-
bildeter Laminarstr€omung in Rohren. Chem. Ing. Tech. 32 (2), 89–90.
Balzereit, F., 1999. Bestimmung von axialen Dispersionskoeffizienten in W€arme€ubertragern
aus Verweilzeitmessungen. Fortschritt-Berichte VDI, Reihe 19, Nr. 120, VDI Verlag,
D€usseldorf.
Bassiouny, M.K., Martin, H., 1984. Flow distribution and pressure drop in plate heat
exchangers—II Z-type arrangement. Chem. Eng. Sci. 39 (4), 701–704.
Chen, J.J.J., 1987. Comments on improvements on a replacement for the logarithmic mean.
Chem. Eng. Sci. 42 (10), 2488–2489.
Churchill, S.W., 1977. Friction-factor equation spans all fluid-flow regimes. Chem. Eng.
84 (24), 91–92.
Churchill, S.W., Ozoe, H., 1973a. Correlations for laminar forced convection with uniform
heating in flow over a plate and in developing and fully developed flow in a tube. J. Heat
Transf. 95 (1), 78–84.
Churchill, S.W., Ozoe, H., 1973b. Correlations for laminar forced convection in flow over
an isothermal flat plate and in developing and fully developed flow in an isothermal tube.
J. Heat Transf. 95 (3), 416–419.
Colebrook, C.F., 1939. Turbulent flow in pipes, with particular reference to the transition
region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11 (4), 133–156.
Collier, J.G., Thome, J.R., 1994. Convective Boiling and Condensation, third ed. Oxford
University Press, Oxford.
Colombo, M., Colombo, L.P.M., Cammi, A., Ricotti, M.E., 2015. A scheme of correlation
for frictional pressure drop in steam-water two-phase flow in helicoidal tubes. Chem.
Eng. Sci. 123, 460–473.
Das, S.K., Roetzel, W., 2004. The axial dispersion model for heat transfer equipment—a
review. Int. J. Transp. Phenom. 6 (1), 23–49.
Diaz, M., Aguayo, A.T., 1987. How flow dispersion affects exchanger performance. Hydro-
carb. Process. 66 (4), 57–60.
Dittus, F.W., Boelter, L.M.K., 1930. Heat transfer in automobile radiators of the tubular
type. In: University of California Publications in Engineering. vol. 2(13),
pp. 443–461. University of California Press, Berkeley, CA. Reprinted in: International
Communications in Heat and Mass transfer, 12(1):3–22, 1985.
Ghobadi, M., Muzychka, Y.S., 2016. A review of heat transfer and pressure drop correlations
for laminar flow in curved circular ducts. Heat Transfer Eng. 37 (10), 815–839.
Gnielinski, V., 1975. Neue Gleichungen f€ur den W€arme- und den Stoff€ubergang in turbu-
lent durchstr€omten Rohren und Kan€alen. Forsch. Ingenieurwes. 41 (1), 8–16.
Gnielinski, V., 1989. Zur W€arme€ubertragung bei laminarer Rohrstr€omung und konstanter
Wandtemperatur. Chem. Ing. Tech. 61 (2), 160–161.