Page 88 - Design and Operation of Heat Exchangers and their Networks
P. 88

76    Design and operation of heat exchangers and their networks


             The inlet and outlet coordinates are expressed as

                                       0         1
                                   0         00
                                 z ¼     , z ¼                        (3.29)
                                       1         0
             The eigenvalues of A are determined by

                                    _
                                kA=C h  r       _
                                            kA=C h     ¼ 0

                                               _
                                      _   kA=C c  r
                                 kA=C c
          which yields

                                             _        _
                             r 1 ¼ 0,r 2 ¼  kA=C h  kA=C c            (3.30)
             The eigenvector H is determined by
                                    _
                                               _
                               kA=C h h 11 + kA=C h h 21 ¼ 0
                                               _
                                    _
                               kA=C c h 11 + kA=C c h 21 ¼ 0

                                                         _
                                            _
                                   _
                          _
                     kA=C h + kA=C h  kA=C c h 12 + kA=C h h 22 ¼ 0

                                                         _
                                       _
                          _
                                                _
                     kA=C c h 12 + kA=C c + kA=C h  kA=C c h 22 ¼ 0
          which yields

                                        1    1
                                   H ¼     _   _                      (3.31)
                                        1 C h =C c
             The inlet matrix can be presented as
                                     "    r 1 z 0  r 2 z 0  #
                                      h 11 e  1 h 12 e  1
                                  0
                                V ¼        0       0                  (3.32)
                                      h 21 e r 1 z 2 h 22 e r 2 z 2
             Its inverse matrix is obtained as
                               "                         #  1
                                 1            1
                          0  1
                         V   ¼
                                     _
                                         _
                                             ð
                                 1  C h =C c e   kA= _ C h  kA= _ C cÞ
              2                                                         3
                     _  _       kA= _ C h  kA= _ C cÞ
                            ð
                   C h =C c e                             1
              6                                                         7

                                                _
                                                    _
                  _
                      _
                           ð
                                                        ð
              6   C h =C c e   kA= _ C h  kA= _ C cÞ   1  C h =C c e   kA= _ C h  kA= _ C cÞ  7
            ¼  6                                                      1 7
              6               1                          1              7
              4                                                         5

                     _  _       kA= _ C h  kA= _ C cÞ     _  _       kA= _ C h  kA= _ C cÞ
                            ð
                                                       ð
                   C h =C c e            1    C h =C c e             1
                                                                      (3.33)
   83   84   85   86   87   88   89   90   91   92   93