Page 89 - Design and Operation of Heat Exchangers and their Networks
P. 89

Steady-state characteristics of heat exchangers  77


                 By substitution of Eqs. (3.30)–(3.33) into Eq. (3.19), the temperature
              distributions in the counterflow heat exchanger can be presented as
                                                          _  _
                                                 ð
                                     ð
                                     kA= _ C h + kA= _ C cÞ 1 zÞ
                            t h  t 0  e                C h =C c
                                 c
                                  ¼                                      (3.34)
                             0
                            t  t 0     ð kA= _ C h  kA= _ C cÞ     _  _
                             h   c    e              C h =C c
                                           h                    i
                                     _  _       ð kA= _ C h  kA= _ C cÞ 1 zÞ
                                                            ð
                           t c  t  0  C h =C c 1 e
                               c
                                ¼                                        (3.35)
                           t  t 0        _  _     ð kA= _ C h  kA= _ C cÞ
                            0
                            h  c       C h =C c  e
                 The outlet temperatures of hot and cold fluids and the heat load of the
              exchanger are
                                           _  _        kA= _ C h  kA= _ C cÞ
                                                   ð
                             00
                            t  t 0   1  C h =C c e
                             h   c
                                  ¼                                      (3.36)
                             0
                            t  t 0         _  _       kA= _ C h  kA= _ C cÞ
                                                  ð
                             h   c   1  C h =C c e
                                            h                 i
                                       _  _        kA= _ C h  kA= _ C cÞ
                                                  ð
                                     C h =C c 1 e
                             00
                            t  t 0
                             c   c
                                  ¼                                      (3.37)
                             0
                            t  t  0        _  _       kA= _ C h  kA= _ C cÞ
                                                  ð
                             h   c   1  C h =C c e
                                                h                  i
                                              _
                                                       ð
                                              C h 1 e   kA= _ C h  kA= _ C cÞ  t  t c 0
                                                                     0
                                                                     h


                                  _

                      _

                 Q ¼ C h t  t  00  ¼ C c t  t ¼
                                      00
                          0
                                          0
                          h  h        c   c
                                                        _
                                                     _
                                                             ð
                                               1  C h =C c e   kA= _ C h  kA= _ C cÞ
                                                                         (3.38)
                 From Eqs. (3.36), (3.37), the ratio of the temperature difference at the
              two ends of the heat exchanger can be written as
                                    t  t 00 c  ð kA= _ C h  kA= _ C cÞ
                                    0
                                    h
                                    t  t 0 c  ¼ e                        (3.39)
                                    00
                                    h


                                     _
                            _
                                              0
                                                        00
                 Because kA=C h  kA=C c ¼ kA t  t  00      t  t  0     =Q, Eq. (3.39) can
                                              h   h     c  c
              be presented by the logarithmic mean temperature difference:

                                                    00
                                           0
                                          t  t c 00    t  t 0 c
                                           h
                                                    h
                                Q ¼ kA                                   (3.40)
                                                     00
                                            0
                                        ln t  t = t  t   0
                                                00
                                            h   c    h   c
                 It is important to emphasize that the analytical solution, Eq. (3.11),is
              valid only if all the eigenvalues are distinct. Obviously, it is not the case when
              _
                   _
              C h ¼ C c , in this case the eigenvalues have the double root, r 1 ¼r 2 ¼0. In
                                                                        (m)
              general, if the coefficient matrix A has a m-multiple eigenvalue r , the
              m-independent solutions corresponding to r (m)  can be expressed as
                                            m
                                           e
                               t i xðÞ ¼ d i x i 1 r ðÞ x  ð i ¼ 1, 2, …, mÞ  (3.41)
   84   85   86   87   88   89   90   91   92   93   94