Page 548 - Design for Six Sigma a Roadmap for Product Development
P. 548

Design Optimization:Taguchi’s Robust Parameter Design  507


              we can get the following relationships by Taylor series approximation:

                             Δg         Δg             Δg
                        y         x 1        x 2    ...        x n
                             Δx 1       Δx 2           Δx n
                               Δg         Δg             Δg
                                    z 1        z 2    ...        z m   (14.9)
                               Δz 1       Δz 2           Δz m

              and




                                 ∂g
                                              ∂g
                                                              ∂g
                 Var(Y)    y         2    x 1       2    x 2     ...       2    x n
                                        2
                            2
                                                    2
                                                                     2
                                 ∂x 1        ∂x 2             ∂x n


                                             ∂g
                                   ∂g
                                                          ∂g
                                       2    z 1    2    z 2        2    z m  (14.10)

                                                                2
                                                    2
                                          2
                                   ∂z 1      ∂z 2        ∂z m
                From this equation, it is clear that we can reduce  Var(Y) by
              reducing either the sensitivities ∂g/∂x i , for i   1...n, which are the
              sensitivities to the variation in design parameters, or ∂g/∂z j , for j
              1...m, which are sensitivities to noise factors. Fortunately, many of
              these sensitivities are influenced by the nominal values of design
              parameters. Figure 14.8 shows how parameter setting may influ-
              ence the variation of Y. Both transfer function y   g(x,z) and sensi-
              tivity, for example, ∂g/∂x i , can be nonlinear functions of parameter
                     Y
                                                   Sensitivity can affect
                                                   performance variation
                                                   under the same
                                                   design parameter
           Smaller                                 variation
           performance
           variation
           Larger
           performance
           variation                                        X

                          Design          Design
                          parameter       parameter
                          setting 1       setting 2
           Figure 14.8 Adjusting sensitivity to reduce Var(Y).
   543   544   545   546   547   548   549   550   551   552   553