Page 426 - Design of Reinforced Masonry Structures
P. 426

M a M max  Moment              M max  Moment


                      H  2                           N  2
           V T                      M max = wHn 2 /12  N  2  N  2  M max = wHn 2 /8
                               Shear                         Shear
                           V a
                                                          V max


               N  2   H  2                     N  2  N  2
                           A max  Deflection              A max  Deflection  (d) Simply supported at top, and bottom
                                    V max = wH/2 (a) Fixed at top, fixed at bottom  V max = wH/2




                   H
           R T             R e                     H       R e
                   wH                             wH

                           M max  Moment                  M max  Moment     Formulas for maximum moments and shears for walls and pilasters subjected to uniform lateral loads [6.32].


                                    M max = wHn 2 /2   1  H  4     M max = wH 2 /8



                           V max  Shear                    V e  Shear
                                          V T        H
                                                     5  8

                               Deflection                     Deflection
                           Δ max                          Δ max        (c) Simply supported at top, fixed at bottom
                                    V max = wH  (a) Free at top, fixed at bottom  V max = 5wH/8


                   H       R e             R T     H       R e              FIGURE 6.43


                   wH                              wH






                                       6.76
   421   422   423   424   425   426   427   428   429   430   431