Page 163 - Design of Solar Thermal Power Plants
P. 163

148         3. GENERAL DESIGN OF A SOLAR THERMAL POWER PLANT

                  Or, the engineering simplified equation can be applied:

             P LOSS ¼ P REFCAV þ P RAD þ P CONV þ P COND

                     2                       3              4    4
                                                      ε w s T   T  A 1
                                  a w                       w    g
                   ¼ 1                        5 P AP þ
                     4
                                         A 1                        A 2
                          1  ð1   a w Þ 1           1  ð1   ε w Þ 1
                                         A 2                        A 1

                                  0:18              1:12 0:982  d AP
                           1 T w        2:47    d AP        L
                   þ0:088Gr 3        cos   q
                             T a               L
                                    2           3
                    l                   2pkH

                       ðT w   T a ÞA 1 þ  4      5 ðT w   80Þ           (3.33)
                    L                   r AP þ d
                                     ln
                                          r AP
                  In order to facilitate the understandings of readers, a calculation
               example is given as follows.
                  Assume

              T g ¼ T a ¼ 20 C; T w ¼ 400 C; a w ¼ 0:9; ε w ¼ 0:85; k ¼ 0:048 W=ðm$ CÞ;



                l ¼ 0:033 W=ðm$ CÞ; d ¼ 0:3m; d AP ¼ 5m; r AP ¼ 2:5m; L ¼ 5m;
                                                     2


             H ¼ L þ d ¼ 5:3m; q ¼ 20 ;  v ¼ 22:8   10  6  m s;  a ¼ 32:8   10  6  m 2   s;
                     2
                                2
                                                                    2
            A 1 ¼ 25 m ; A 2 ¼ 100 m ; P AP ¼ 6500 kW; s ¼ 5:6686   10  8  W    m $K 4
                  Grashof number is:
                    gbðT w   T a ÞL 3   9:81  ð400   20Þ  5 3            12
               Gr ¼              ¼          6            6      ¼ 2:1   10
                         va        22:8   10    32:8   10    293
                  When interior of the cavity is in a turbulent state, various
               parameters are substituted into Eq. (3.33)
                    "                        #
                                  0:9
             P LOSS ¼ 1                         6500
                                         25
                         1  ð1   0:9Þ 1
                                         100
                                               4

                      0:85   5:6686   10  8    673   293 4       25
                     þ                                      þ 0:088
                                               100
                              1  ð1   0:85Þ 1
                                               25

                                          0:18                      5
                                  1                     5  1:12 0:982  5
                              12     400        2:47
                       2:1   10  3           cos   20
                                     20                 5
                                            "              #

                      0:033                  2p   0:048   5:3
                            ð400   20Þ  25 þ                  ð400   80Þ
                        5                        2:5 þ 0:3
                                              ln
                                                    2:5
                  ¼ 176 þ 183 þ 103 þ 4:5 ¼ 466:5ðkWÞ
   158   159   160   161   162   163   164   165   166   167   168