Page 303 - Determinants and Their Applications in Mathematical Physics
P. 303

288   6. Applications of Determinants in Mathematical Physics

                       b rs = ω s−r a rs .                          (6.10.6)
                                          (n+1)         (n+1)
                       E n = |e rs | n =(−1) A  =(−1) A     .       (6.10.7)
                                        n
                                                     n
                                          1,n+1         n+1,1
          In some detail,

                         u 0   ωu 1  −u 2  −ωu 3  ···

                         ωu 1   u 0  ωu 1  −u 2  ···
                                                          2
                  A n =   −u 2  ωu 1  u 0  ωu 1  ···    (ω = −1),   (6.10.8)

                         −ωu 3  −u 2  ωu 1  u 0  ···
                         ..............................

                                                     n

                         u 0  −u 1  u 2  −u 3  ···

                         u 1  u 0  −u 1  u 2  ···

                  B n =   u 2  u 1  u 0  −u 1  ···   ,              (6.10.9)

                         u 3  u 2  u 1  u 0  ···
                        ..........................

                                                n

                         ωu 1    u 0  ωu 1  −u 2  ···

                         −u 2   ωu 1   u 0  ωu 1  ···
                                                          2
                  E n =   −ωu 3  −u 2  ωu 1  u 0  ···    (ω = −1), (6.10.10)

                         u 4   −ωu 3  −u 2  ωu 1  ···
                         ..............................

                                                     n
                              (n+1)
                  A n =(−1) E n+1,1 .                              (6.10.11)
                           n
            A n is a symmetric Toeplitz determinant (Section 4.5.2) in which t r =
          ω u r . All the elements on and below the principal diagonal of B n are
           r
          positive. Those above the principal diagonal are alternately positive and
          negative.
            The notation is simplified by omitting the order n from a determinant
                                                               (n)
          or cofactor where there is no risk of confusion. Thus A n , A  , A , etc.,
                                                                    ij
                                                               ij   n
          may appear as A, A ij , A , etc. Where the order is not equal to n, the
                                ij
          appropriate order is shown explicitly.
            A and E, and their simple and scaled cofactors are related by the
          following identities:
                           A 11 = A nn = A n−1 ,
                                 A 1n = A n1 =(−1) n−1 E n−1 ,
                                 E p1 =(−1) n−1 A pn ,
                                 E nq =(−1) n−1 A 1q ,
                                 E n1 =(−1) n−1 A n−1 ,            (6.10.12)
                                   2        
 2
                                A       E
                              	   
    	  n1
                                    =          ,                   (6.10.13)
                                E       A 11
                               p1
                                        2
                            2
                           E E E  nq  = A A A .                    (6.10.14)
                                              1q
                                          pn
          Lemma 6.17.
                                       A = B.
   298   299   300   301   302   303   304   305   306   307   308