Page 306 - Determinants and Their Applications in Mathematical Physics
P. 306

6.10 The Einstein and Ernst Equations  291
                                        2
                                    E                p1

                               = −             ∂a pq  E E .
                                                        nq
                                    A           ∂z
                                          p  q
          Hence, referring to Lemma 6.19,
          ∂E n1    	  A  
 2  ∂A n1
               + ω             = −         ∂e pq  + ω  ∂a pq  E E  nq
                                                          pq
           ∂ρ        E     ∂z               ∂ρ      ∂z
                                    p  q
                                 1                 p1
                               =         (p − q)e pq E E nq
                                 ρ
                                    p  q

                                 1        p1                           p1
                               =       pE      e pq E  nq  −  qE  nq  e pq E
                                 ρ
                                     p       q           q      p

                                 1        p1
                               =       pE δ pn −    qE δ q1
                                                      nq
                                 ρ
                                     p            q
                                 1    n1    n1
                               =  (nE   − E   ),
                                 ρ
          which is equivalent to (a).
                      ∂A n1  ∂A 1n
                           =       = −       ∂a pq  A A 1q
                                                   pn
                       ∂ρ     ∂ρ              ∂ρ
                                        p  q
                             ∂E n1                 p1
                                   = −       ∂e pq  E E nq
                              ∂z              ∂z
                                        p  q
                                            2

                                        A
                                   = −             ∂e pq  A A .
                                                         pn
                                                            1q
                                        E           ∂z
                                              p  q
          Hence,
                ∂A n1    	 E  
 2  ∂E n1
                     + ω
                 ∂ρ        A     ∂z

                                 ∂a pq   ∂e pq
                    = −               + ω      A A  1q
                                                pn
                                  ∂ρ      ∂z
                          p  q
                         1
                    = −          (p − q +1)a pq A A 1q
                                              pn
                         ρ
                            p  q

                       1
                    =        qA 1q  a pq A pn  −  (p +1)A pn  a pq A 1q
                       ρ
                          q       p           p            q

                       1
                    =        qA δ qn −   (p +1)A δ p1
                               1q
                                                pn
                       ρ
                          q            p
                       1                       n1
                    =   (nA 1n  − 2A )(A 1n  = A ),
                                  1n
                       ρ
   301   302   303   304   305   306   307   308   309   310   311