Page 305 - Determinants and Their Applications in Mathematical Physics
P. 305

290   6. Applications of Determinants in Mathematical Physics

          Lemma 6.19.

                             q − p
          a.  ∂e pq  + ω  ∂a pq  =  e pq ,
              ∂ρ      ∂z       ρ

                             p − q +1         2
          b.  ∂a pq  + ω  ∂e pq  =          (ω = −1).
              ∂ρ      ∂z         ρ     a pq
          Proof. If p ≥ q − 1, then, applying (6.10.3) with r → p − q,
                     ∂    p − q         ∂   p − q    p−q+1

                        +       e pq =    +        (ω     u p−q+1 )
                     ∂ρ     ρ          ∂ρ     ρ
                                        ∂   p−q+1
                                   = −    (ω     u p−q )
                                       ∂z
                                   = −ω  ∂a pq  .
                                          ∂z
          If p<q − 1, then, applying (6.10.4) with r → q − p,

                     ∂    p − q         ∂   q − p    q−p−1
                        +       e pq =    −        (ω     u q−p−1 )
                     ∂ρ     ρ          ∂ρ     ρ
                                      ∂   q−p−1
                                   =    (ω     u q−p )
                                      ∂z
                                   = −ω  ∂a pq  ,
                                          ∂z
          which proves (a). To prove (b) with p ≥ q − 1, apply (6.10.4) with r →
          p − q + 1. When p<q − 1, apply (6.10.3) with r → q − p − 1.
          Lemma 6.20.
                                          2
               ∂E n1     2  ∂A n1  (n − 1)E E n1
              2
          a. E       + ωA       =              ,
                ∂ρ          ∂z          ρ
                                          2
               ∂A n1     2  ∂E n1  (n − 2)A A n1  2
              2
          b. A      + ωE        =               (ω = −1).
                ∂ρ          ∂z          ρ
          Proof.
                                          n

                           A = |a pq | n ,   a pq A pr  = δ qr ,
                                         p=1
                                          n

                           E = |e pq | n ,  e pq E pr  = δ qr .
                                         p=1
            Applying the double-sum identity (B) (Section 3.4) and (6.10.12),
                         ∂E  n1                p1
                               = −       ∂e pq  E E ,
                                                  nq
                          ∂ρ              ∂ρ
                                    p  q
                         ∂A n1
                                               pn
                               = −       ∂a pq  A A 1q
                          ∂z              ∂z
                                    p  q
   300   301   302   303   304   305   306   307   308   309   310